ANTICANCER DRUG DEVELOPMENT

Edited by

Bruce C. Baguley
Auckland Cancer Society Research Centre
The University of Auckland
Auckland, New Zealand

David J. Kerr
Institute for Cancer Medicine
University of Oxford
Oxford, United Kingdom

ACADEMIC PRESS
A Division of Harcourt, Inc.
CONTENTS

CHAPTER 1
A BRIEF HISTORY OF CANCER CHEMOTHERAPY
Bruce C. Baguley

Summary 1
1. Introduction 1
2. Genotoxic (Cytotoxic) Therapy 5
3. Growth Control Pathways 5
4. Host-Tumor Interactions 7
5. Conclusions 8
References 9

CHAPTER 2
NOVEL TARGETS IN THE CELL CYCLE AND CELL CYCLE CHECKPOINTS
Yves Pommier, Qiang Yu, and Kurt W. Kohn

Summary 13
1. Introduction 13
2. Molecular Regulation of Cell Cycle Progression 14
3. Molecular Regulation of Cell Cycle Checkpoints 15
4. Rationale for Targeting Cyclin-Dependent Kinases and Cell Cycle Checkpoint Pathways 17
5. Agents and Strategies for Therapeutic Interference 19
6. Conclusions 24
References 25

CHAPTER 3
GROWTH FACTOR AND SIGNAL TRANSDUCTION TARGETS FOR CANCER THERAPY
W. R. Leopold, Alex Bridges, Stuart Decker, David W. Fry, Alan Kraker, and Judith Sebold-Leopold

Summary 31
1. Introduction 31
2. The ErbB Family of Receptor Tyrosine Kinases (RTKs) 32
3. The Ras-Raf-MEK-ERK Signaling Pathway 34
4. c-Src Kinase, Signal Transduction, Transformation, and Cancer 37
5. Akt 38
6. Nuclear Hormone Receptors as Targets for Cancer Therapy 40
7. Implications for Drug Discovery and Development 43
References 44
CONTENTS

CHAPTER 4

CELL DEATH PATHWAYS AS TARGETS FOR ANTICANCER DRUGS
Eric Solary, Nathalie D roaring, Olivier Sordet, Cedric Rebe, Rodolphe Filomenko, Anne Wotawa, St ephanie Plenchette, and Patrick Ducoroy

Summary 55
1. Introduction 56
2. Two Main Pathways for Drug-Induced Apoptosis 56
3. Modulation of Drug-Induced Cell Death by Bcl-2 and Related Proteins 58
4. The Central Role of Caspases in Drug-Induced Apoptosis 61
5. Synergy between Death Receptors and Cytotoxic Drugs 64
6. The Rel/NF-KB/KB Proteins 69
7. Conclusion 70
References 70

CHAPTER 5

DRUG RESISTANCE PATHWAYS AS TARGETS
Akihiro Tomida and Takashi Tsuruo

Summary 77
1. Introduction 77
2. Targeting Drug Transport 78
3. Targeting Cellular Stress Responses 81
4. Targeting DNA Repair Systems 85
5. Conclusions 86
References 86

CHAPTER 6

ROLE OF MATRIX METALLOPROTEINASES AND PLASMINOGEN ACTIVATORS IN CANCER INVASION AND METASTASIS: THERAPEUTIC STRATEGIES
Stanley Zucker, Jian Cao, and Christopher J. Malloy

Summary 91
1. Introduction 92
2. The Extracellular Matrix 92
3. Cancer Invasion and Metastasis 92
4. Cell Adhesion in Cancer 94
5. Cancer Cell Motility 95
6. Inflammatory Response to Cancer 95
7. Proteolytic Enzymes Implicated in Cancer Invasion 96
8. MMPs as Novel Anticancer Agents 104
9. Sheddases 111
10. The uPA System: Proteolytic Control of MMP Activation 111
References 116

CHAPTER 7

TUMOR VASCULATURE AS A TARGET
Elianne A. Koop and Emile E. Voest

Summary 123
1. Introduction 123
2. How to Inhibit Tumor Angiogenesis 127
3. Concluding Remarks 131
References 131

CHAPTER 8

GENE-DIRECTED ENZYME PRODRUG THERAPY
Caroline J. Springer and Ion Niculescu-Duvaz

Summary 137
1. Introduction 137
2. Background 138
3. Enzyme-Prodrug Systems 138
4. Tailored Prodrugs for GDEPT 140
5. The Activation Process 148
6. Augmenting the Effect 149
7. Exploiting the Bystander Effect and Acquired Immunity 150
8. Conclusions 151
References 152

CHAPTER 9

TUMOR ANTIGENS AS TARGETS FOR ANTICANCER DRUG DEVELOPMENT
Mario Sznol and Thomas Davis

Summary 157
1. Introduction 157
CHAPTER 15
TUMOR CELL CULTURES IN 
DRUG DEVELOPMENT
Bruce C. Baguley, Kevin O. Hicks, 
and William R. Wilson

Summary 269
1. Introduction 269
2. Growth Inhibition Assays 270
3. Clonogenic Assays 274
4. Three-Dimensional Cell Cultures: 
Modeling Extravascular Drug Transport 275
5. Modeling of in Vivo Activity by in 
Vitro Assays 278
6. Perspective 280
References 280

CHAPTER 16
SCREENING USING 
ANIMAL SYSTEMS
Angelika M. Burger and Heinz-Herbert Fiebig

Summary 285
1. Introduction 285
2. Choice of in Vivo Systems for Large-Scale 
Drug Development 286
Using Human Tumor Xenografts—The Freiburg 
Experience 289
4. Use of Transgenic Animals in the Search 
for New Drugs 293
5. Screening for Angiogenesis Inhibitors 295
References 297

CHAPTER 17
RELEVANCE OF PRECLINICAL 
PHARMACOLOGY AND 
TOXICOLOGY TO PHASE I 
TRIAL EXTRAPOLATION 
TECHNIQUES: RELEVANCE OF 
ANIMAL TOXICOLOGY
Joseph E. Tomaszewski, Adaline C. Smith, 
Joseph M. Covey, Susan J. Donohue, Julie K. Rhie, 
and Karen M. Schweikart

Summary 301
1. Introduction 302
2. Historical Perspective 302
3. Special Toxicity Evaluations 303
4. Recent Examples of Drug Development 
at NCI 303
5. Predictability of Nonclinical Animal Data 320
6. Conclusions 323
References 323

CHAPTER 18
CLINICAL TRIAL DESIGN: 
INCORPORATION OF 
PHARMACOKINETIC, 
PHARMACODYNAMIC, AND 
PHARMACOGENETIC PRINCIPLES
Alex Sparreboom, Walter J. Loos, 
Maja J. A. de Jonge, and Jaap Verweij

Summary 329
1. Introduction 330
2. Rationale for Chemotherapy Optimization 330
3. Pharmacokinetic-Pharmacodynamic 
Relationships 332
CHAPTER 19

TUMOR IMAGING APPLICATIONS IN THE TESTING OF NEW DRUGS
Eric Ofori Aboagye, Azeem Saleem, and Patricia M. Price

Summary 353
1. Introduction 353
2. Positron Emission Tomography 354
3. PET in New Drug Evaluation 355
4. Conclusions 365
References 365

CHAPTER 20

MECHANISTIC APPROACHES TO PHASE I CLINICAL TRIALS
David R. Ferry and David J. Kerr

Summary 371
1. Introduction 371
2. Mechanism-Based Studies of Established Anticancer Agents to Assess Target Inhibition 373
3. Mechanistic Trial Perspectives on Anticancer Agents with Novel Mechanisms 373
4. Potential of PET Scanning in the Assessment of Pharmacodynamic End Points 381
5. Conclusion 381
References 381

INDEX 385