C. H. Edwards, Jr.

The Historical Development of the Calculus

With 150 Illustrations

Springer-Verlag
New York Berlin Heidelberg London Paris
Tokyo Hong Kong Barcelona Budapest

Contents

1	Area, Number, and Limit Concepts in Antiquity	1
	Babylonian and Egyptian Geometry	1
	Early Greek Geometry	5
	Incommensurable Magnitudes and Geometric Algebra	10
	Eudoxus and Geometric Proportions	12
	Area and the Method of Exhaustion	16
	Volumes of Cones and Pyramids	19
	Volumes of Spheres	24
	References	28
2	Archimedes	29
	Introduction	29
	The Measurement of a Circle	31
	The Quadrature of the Parabola	35
	The Area of an Ellipse	40
	The Volume and Surface Area of a Sphere	42
	The Method of Compression	54
	The Archimedean Spiral	54
	Solids of Revolution	62
	The Method of Discovery	68
	Archimedes and Calculus?	74
	References	75
3	Twilight, Darkness, and Dawn	77
	Introduction	77
	The Decline of Greek Mathematics	78
	Mathematics in the Dark Ages	80
		ix

x		Contents
	The Arab Connection	81
	Medieval Speculations on Motion and Variability	86
	Medieval Infinite Series Summations	91
	The Analytic Art of Viète	93
	The Analytic Geometry of Descartes and Fermat	95
	References	97
4	Early Indivisibles and Infinitesimal Techniques	98
	Introduction	98
	Johann Kepler (1571–1630)	99
	Cavalieri's Indivisibles	104
	Arithmetical Quadratures	109
	The Integration of Fractional Powers	113
	The First Rectification of a Curve	118
	Summary	120

	Introduction	98
	Johann Kepler (1571–1630)	99
	Cavalieri's Indivisibles	104
	Arithmetical Quadratures	109
	The Integration of Fractional Powers	113
	The First Rectification of a Curve	118
	Summary	120
	References	121
	2	
5	Early Tangent Constructions	122
	Introduction	122
	Fermat's Pseudo-equality Methods	122
	Descartes' Circle Method	125
	The Rules of Hudde and Sluse	127
	Infinitesimal Tangent Methods	132
	Composition of Instantaneous Motions	134
	The Relationship Between Quadratures and Tangents	138
	References	141

4	Early Indivisibles and Infinitesimal Techniques	98
	Introduction	98
	Johann Kepler (1571-1630)	99
	Cavalieri's Indivisibles	104
	Arithmetical Quadratures	109
	The Integration of Fractional Powers	113
	The First Rectification of a Curve	118
	Summary	120
	References	121
5	Early Tangent Constructions	122
	Introduction	122
	Fermat's Pseudo-equality Methods	122
	Descartes' Circle Method	125
	The Rules of Hudde and Sluse	127
	Infinitesimal Tangent Methods	132
	Composition of Instantaneous Motions	134
	The Relationship Between Quadratures and Tangents	138
	References	141
6	Napier's Wonderful Logarithms	142
	John Napier (1550–1617)	142
	The Original Motivation	143
	Napier's Curious Definition	148
	Arithmetic and Geometric Progressions	151
	The Introduction of Common Logarithms	153
	Logarithms and Hyperbolic Areas	154
	Newton's Logarithmic Computations	158
	Mercator's Series for the Logarithm	161
	References	164
7	The Arithmetic of the Infinite	166
	Introduction	166
	Wallis' Interpolation Scheme and Infinite Product	170

Contents	
Quadrature of the Cissoid	
The Discovery of the Binomial Series	

хi

	Quadrature of the Cissoid	176
	The Discovery of the Binomial Series	178
	References	187
8	The Calculus According to Newton	189
	The Discovery of the Calculus	189
	Isaac Newton (1642-1727)	190
	The Introduction of Fluxions	191
	The Fundamental Theorem of Calculus	194
	The Chain Rule and Integration by Substitution	196
	Applications of Infinite Series	200
	Newton's Method	201
	The Reversion of Series	204
	Discovery of the Sine and Cosine Series	205 209
	Methods of Series and Fluxions	210
	Applications of Integration by Substitution Newton's Integral Tables	210
	Arclength Computations	217
	The Newton-Leibniz Correspondence	222
	The Calculus and the Principia Mathematica	224
	Newton's Final Work on the Calculus	226
	References	230
9	The Calculus According to Leibniz	231
	Gottfried Wilhelm Leibniz (1646-1716)	231
	The Beginning—Sums and Differences	234
	The Characteristic Triangle	239
	Transmutation and the Arithmetical Quadrature of	
	the Circle	245
	The Invention of the Analytical Calculus	252
	The First Publication of the Calculus	258
	Higher-Order Differentials	260
	The Meaning of Leibniz' Infinitesimals Leibniz and Newton	264
	References	265 267
	References	207
10	The Age of Euler	268
	Leonhard Euler (1707-1783)	268
	The Concept of a Function	270
	Euler's Exponential and Logarithmic Functions	272
	Euler's Trigonometric Functions and Expansions	275
	Differentials of Elementary Functions à la Euler	277

	٠
W1	1

Taylor's Series	nerical Integration	
	ts in the Eighteenth Century	2
References		2
The Calculus Accor Weierstrass	rding to Cauchy, Riemann, ar	nd 3
Functions and Continu	uity at the Turn of the Century	3
Fourier and Discontinuity		
Bolzano, Cauchy, and Continuity		:
Cauchy's Differential (:
The Cauchy Integral		;
The Riemann Integral	and Its Reformulations	:
The Arithmetization of	f Analysis	3
References		3
Postscript: The Twentic	eth Century	3
	al and the Fundamental Theorem	
Calculus		
Non-standard Analysis References	s—The Vindication of Euler?	