Contents

The Main Histocompatibility System in Man. M. Jeannet. With 2 Tables 1
A. Introduction ... 1
B. Historical Background 1
C. Methodology and Serological Considerations 3
 I. Leukoagglutination 3
 II. Lymphocyte Cytotoxicity 4
 III. Platelet Complement Fixation 4
 IV. Serum Sources .. 4
 1. Polytransfused Patients 5
 2. Pregnancy .. 5
 3. Immunization of Human Volunteers 5
 4. After Organ Transplantation 6
 5. “Natural” Lymphocytotoxins 6
 6. Immunization of Animals 6
D. Genetics of the HL-A System 7
E. Heterogeneity and Cross-Reactivity of HL-A Antigens 9
F. HL-A, Mixed Lymphocyte Culture (MLC), Cell-Mediated Lympholysis (CML), and Cellular Immunity 10
G. HL-A System and Clinical Transplantation 12
 I. Skin Graft Survival 12
 II. Kidney Transplantation 12
 III. Variability in the Host Immune Response 15
 IV. Donor Selection for Kidney Transplantation 17
 V. Bone Marrow Transplantation 18
H. HL-A System and Human Diseases 20
 I. HL-A and Hematologic Malignant Diseases 20
 II. HL-A and Cancer (other than Lymphomas) 22
 III. HL-A and Immunopathic Diseases 22
 IV. HL-A and Infectious Diseases 23
 V. HL-A and Rheumatoid Diseases 24
 VI. HL-A System and Various other Diseases 25
I. HL-A System and Blood Transfusion 25
J. HL-A System and Disputed Paternity Cases 26
K. Conclusions ... 27
References .. 27

I. Introduction ... 39
Phylogenetic Aspects of Transplantation. EDWIN L. COOPER. With 4 Figures

A. Introduction
B. Transplantation Reactions in Invertebrates Other than Annelids and Echinoderms
 1. Organelle Transplantation in Protozoans (Sarcodina, Ciliata)
 2. Metazoans—Specificity of Reaggregation in Porifera
 3. Incompatibility in Cnidaria (Hydrozoa, Anthozoa)
 4. Platychelminthes and Sipunculida
 5. Equivocal Incompatibilities in Mollusca (Pelecypoda, Gastropoda, Cephalopoda)
 6. Arthropoda
 7. Genetic Control in Urochordata
 8. Summary of Quasi Immunorecognition
C. Transplantation Reactions in Invertebrates that Reveal Primordial Cell-Mediated Immunity
 I. Short-term Immunologic Memory
 II. Cell and Tissue Responses that Indicate Self Recognition in Echinoderms
 III. Transplantation in Asteroidea
 IV. Short-term Memory
 V. The Earthworm Model
 1. First- and Second-Set Allograft Rejection in Lumbricus terrestris and Eisenia fetida
 2. Rejection of First- and Second-Set Xenografts Exchanged between Lumbricus and Eisenia
 3. Specificity and Anamnestic Response
 4. The Cellular Response
 5. The Role of Temperature in Earthworm Tissue Graft Rejection
 6. Summary
D. Transplantation Immunity in Fishes
 I. Introduction
 II. The Hagfish
 III. The Lamprey
 IV. Cartilaginous Fishes
 V. Bony Fishes (Holosteans; Teleosts)
E. Transplantation Immunity in Amphibians
 I. Adult Apodans
 1. Introduction
 2. General Description of Autografts and Allografts
 3. Histopathology
 II. Adult Urodeles
 1. The Latent Phase
 2. The Rejection Phase
 3. The Chronic Rejection Response to Xenografts
 4. Role of the Thymus in Graft Rejection
 5. Histologic Differences in Skin
 6. Suppression of Transplantation Immunity
 III. Anurans
 1. Larvae
 2. Bone Marrow Restoration of Transplantation Immunity in Adult Leopard Frogs
 IV. The Mexican Iguana
 V. The Garter Snake

References
Contents

Ontogenetic Aspects

Osias Stutman and Catherine E. Calkins

- **Introduction**
- **Ontogeny of Lymphoid Structures**
- **Ontogeny of Transplantation Immunity**
- **Ontogeny of Thymus-Dependent Functions**
- **Concluding Remarks**

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Introduction</td>
<td>169</td>
</tr>
<tr>
<td>B. Ontogeny of Lymphoid Structures</td>
<td>170</td>
</tr>
<tr>
<td>C. Ontogeny of Transplantation Immunity</td>
<td>179</td>
</tr>
<tr>
<td>D. Ontogeny of Thymus-Dependent Functions</td>
<td>181</td>
</tr>
<tr>
<td>E. Concluding Remarks</td>
<td>186</td>
</tr>
</tbody>
</table>

References

- 187

Humoral and Cell-Mediated Mechanisms of Allograft Rejection

K. Theodor Brunner and Jean-Charles Cerottini

- **Introduction**
- **Assay Methods of Cell-Mediated Cytotoxicity (CMC)**
- **Cytotoxicity Mediated by Specifically Sensitized T-Cells**
- **In Vivo Formation of Cytotoxic T Lymphocytes**
- **In Vitro Formation of Cytotoxic T Lymphocytes**
- **Mechanism of T-Cell Cytotoxicity**
- **Specificity of Target Cell Destruction by Cytotoxic T Lymphocytes**
- **Antibody-Dependent Cytotoxicity Mediated by Normal Lymphoid Cells**
- **Cytotoxicity Mediated by Macrophages**
- **Relevance of CMC to Allograft Rejection**
- **The Role of Antibody in Allograft Rejection**

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Introduction</td>
<td>195</td>
</tr>
<tr>
<td>B. Assay Methods of Cell-Mediated Cytotoxicity (CMC)</td>
<td>198</td>
</tr>
<tr>
<td>C. Cytotoxicity Mediated by Specifically Sensitized T-Cells</td>
<td>200</td>
</tr>
<tr>
<td>D. In Vivo Formation of Cytotoxic T Lymphocytes</td>
<td>201</td>
</tr>
<tr>
<td>E. In Vitro Formation of Cytotoxic T Lymphocytes</td>
<td>202</td>
</tr>
<tr>
<td>F. Mechanism of T-Cell Cytotoxicity</td>
<td>203</td>
</tr>
<tr>
<td>G. Specificity of Target Cell Destruction by Cytotoxic T Lymphocytes</td>
<td>204</td>
</tr>
<tr>
<td>H. Antibody-Dependent Cytotoxicity Mediated by Normal Lymphoid Cells</td>
<td>205</td>
</tr>
<tr>
<td>I. Cytotoxicity Mediated by Macrophages</td>
<td>207</td>
</tr>
<tr>
<td>K. Relevance of CMC to Allograft Rejection</td>
<td>209</td>
</tr>
<tr>
<td>L. The Role of Antibody in Allograft Rejection</td>
<td>210</td>
</tr>
</tbody>
</table>

References

- 212

Cell Systems Participating in Graft Rejections

J. Hagmann, M.W. Hess, H.U. Keller and H. Cottier

- **Introduction**
- **Lymphocytes**
 - Development of the Immune System and Lymphocyte Subclasses
 - Early Ontogenesis of Lymphoid Organs and Cells
 - Postnatal Development of the Lymphocytic Systems
 - The Central Role of the Thymus
 - Peripheral Lymphocytes
 - Lymphocyte Subclasses
 - The Functions of Peripheral Lymphocytes
 - Helper and Suppressor Activity
 - Cell-Mediated Cytotoxicity
 - Mixed Lymphocyte Cultures
 - Graft-Versus-Host Reaction (GVHR)
- **Macrophages**
- **Neutrophilic Granulocytes**
- **Other Cells and Structures**

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Introduction</td>
<td>217</td>
</tr>
<tr>
<td>B. Lymphocytes</td>
<td>217</td>
</tr>
<tr>
<td>1. Development of the Immune System and Lymphocyte Subclasses</td>
<td>217</td>
</tr>
<tr>
<td>2. Postnatal Development of the Lymphocytic Systems</td>
<td>218</td>
</tr>
<tr>
<td>3. The Central Role of the Thymus</td>
<td>219</td>
</tr>
<tr>
<td>II. Peripheral Lymphocytes</td>
<td>223</td>
</tr>
<tr>
<td>1. Lymphocyte Subclasses</td>
<td>223</td>
</tr>
<tr>
<td>a) T Cells</td>
<td>223</td>
</tr>
<tr>
<td>b) B-cells</td>
<td>226</td>
</tr>
<tr>
<td>c) Null Cells</td>
<td>229</td>
</tr>
<tr>
<td>2. The Functions of Peripheral Lymphocytes</td>
<td>229</td>
</tr>
<tr>
<td>a) Helper and Suppressor Activity</td>
<td>229</td>
</tr>
<tr>
<td>b) Cell-Mediated Cytotoxicity</td>
<td>230</td>
</tr>
<tr>
<td>c) Mixed Lymphocyte Cultures</td>
<td>232</td>
</tr>
<tr>
<td>d) Graft-Versus-Host Reaction (GVHR)</td>
<td>233</td>
</tr>
<tr>
<td>C. Macrophages</td>
<td>234</td>
</tr>
<tr>
<td>D. Neutrophilic Granulocytes</td>
<td>235</td>
</tr>
<tr>
<td>E. Other Cells and Structures</td>
<td>235</td>
</tr>
</tbody>
</table>

References

- 235

General Tolerance Phenomena

T. Hraba

- **Introduction**
- **Tolerance Phenomena and Other Specific Inhibitions of Immune Reactions**
 - Inhibition States Classified as Immunologic Tolerance

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Introduction</td>
<td>247</td>
</tr>
<tr>
<td>B. Tolerance Phenomena and Other Specific Inhibitions of Immune Reactions</td>
<td>249</td>
</tr>
<tr>
<td>I. Inhibition States Classified as Immunologic Tolerance</td>
<td>250</td>
</tr>
</tbody>
</table>
1. The Sulzberger-Chase Phenomenon .. 250
2. Immunologic Paralysis ... 250
3. Tolerance to Heterologous Serum Proteins 251
4. Tolerance to Other Antigens ... 253

II. Other Antigen-Induced States of Specific Inhibition of the Immune Response 253
1. Immunologic Enhancement ... 253
2. Immune Deviation ... 254

C. Mechanisms of Immunologic Tolerance .. 254
I. The Relation of Antibody-induced Suppression to Immunologic Tolerance 254
II. Cellular Processes in Immunologic Tolerance 256
III. Suppressor Cells .. 258
IV. Transplantation Tolerance .. 260
V. Mechanism of Unresponsiveness to Self Components 262
D. Conclusions ... 264

References .. 265

Transplantation of Cells: Experimental and Clinical Observations. GERHARD R.F. KRUEGER. With 44 Figures and 3 Tables ... 275
A. Introduction .. 275
B. Historical Notes .. 276
C. Cell Types Used for Transplantation and Indications for the Respective Procedure 278
I. Experimental Transplantation .. 278
II. Human Transplantation ... 284
1. Indications for Transplantation of Blood and its Components 284
2. Indications for Transplantation of Bone Marrow 284
D. Techniques of Cell Transplantation ... 287
I. Details of Patient Selection ... 287
1. Selection of the Host .. 288
2. Selection of the Donor ... 288
II. Preevaluation and Pretreatment of Host and Donor 288
1. Pretreatment of the Donor .. 288
2. Pretreatment of the Recipient ... 289
III. Procurement of Bone Marrow Cells ... 294
IV. Cell Grafting ... 296
V. Cells other than Bone Marrow Cells used for Transplantation in Man 296
VI. Posttransplant Clinical Investigation of Bone Marrow Recipient 297
E. Demonstration and Localization of Engrafted Cells 300
F. Graft-Host Interactions ... 311
I. Microenvironmental Influences ... 311
II. Graft Rejection .. 312
III. Graft-Versus-Host Reaction (GVHR) .. 318
IV. Therapeutic Intervention of Postengraftment Disease 320
G. Conclusions ... 321
References .. 322

Skin Grafts in Animals and Man. ZOLTAN J. LUCAS. With 4 Figures and 3 Tables 329
A. Introduction .. 329
B. Operational Definition of Transplant Antigens 330
C. Morphologic Changes Occurring in Skin Allografts 332
I. Sequential Changes in Gross and Microscopic Appearance 333
II. Characterization and Quantitation of the Infiltrating Cells 335
III. Comparison of Morphologic Events in the Homograft Reaction and in other Hypersensitivity Reactions 335
D. The Immune Responses Induced by Skin Grafting

I. Afferent Phase—Antigen Recognition

II. Central Phase—Clonal Proliferation, Yielding both Memory and Differentiated Effector Cells

III. Effector Phase—the Expression of Immunity

1. Specific Immune Cytotoxic Mechanisms

2. Recruitment of Nonsensitized Effector Cells by Lymphokines Secreted by Sensitized T-Cells

3. Local Activation of the Host's General Inflammatory Response

4. Correlation of Immunologic and Pathophysiologic Events with Clinical Skin Graft Rejection Syndromes

IV. Autoregulatory Phase

1. Complete or Partial Tolerance

 a) Conditions Affecting Induction, Maintenance, and Reversal of Immunologic Tolerance

 b) The Absence of Reactive Cells or the Presence of Nonreactive Cells

 c) The Presence of Immunologically Active Lymphocytes Blocked by Serum Factors

 d) Other Alternatives: Suppressive or Regulatory Events Mediated by Lymphocytes on Immune Reactions

2. Immunologic Enhancement

 a) General Features of Graft Survival

 b) Relationship Between Organ Vascularity and Immunologic Enhancement

References

Transplantation of Connective Tissue. M. Jäger and C.J. Wirth. With 16 Figures

A. Introduction

B. General Section

I. Anatomic Structure of Connective-Tissue Types as it Affects Suitability for Transplantation

II. Viability and Nonviability: Denaturation of the Graft as it Affects Primary Healing and Restructuring

III. Biological and Mechanical Merits of Auto-, Homo-, and Heterologous Transplants

IV. Changes with Age in Connective Tissue as they Affect Transplantation

V. Immune Reactions in the Transplantation of Living and Preserved Connective Tissue

VI. Preservation

VII. Healing

C. Specific Section

I. Tendon

II. Cutis

III. Fascia

IV. Dura

D. Future Prospects

References

I. Introduction and Historical Background

II. Basic Principles of Keratoplasty

References
A. Terminology ... 404
B. Indications for Keratoplasty 405
C. Criteria for Donor Material and Storage 407
 1. General .. 407
 2. Donor-Cornea Evaluation (Laboratory and Clinical) 408
 3. Storage ... 409
D. Surgical Techniques in Keratoplasty 411
E. Factors Determining Prognosis of Keratoplasty 412
 1. Quality of the Donor-Cornea 412
 2. State of the Recipient Cornea 413
 3. Other Ocular Disease 414
 4. Quality of Surgery 415
F. Healing of the Corneal Wound in Keratoplasty 415
G. Fate of Donor Cells in Keratoplasty 416
III. Unsuccessful Keratoplasty 417
A. Nonimmunologic Factors for Graft Failure 418
B. Immunologic Reasons for Graft Failure 421
IV. Experimental Keratoplasty and Heterografting 431

References ... 432

General Pathology of the Transplantation Reaction in Experimental and Clinical Organ Grafts. CHRISTOPH R. JERUSALEM and PAUL H.K. JAP. With 61 Figures 439
A. The Many Facets of the Transplantation Reaction 439
I. Introduction ... 439
II. Terminology ... 440
 1. Donor-Recipient Relationship 440
 2. Chronologies of Rejection 441
III. Elements of the Transplantation Reaction 442
 1. Dichotomy of the Immune Response 442
 2. T-Helper Cell Mechanisms 446
 3. Effector Mechanisms of Cell-Mediated Cytotoxicity 447
 a) Autonomy of T-Lymphocyte Cytotoxicity 448
 b) Mediators of the Cellular Immune Reaction 449
 c) Cell-Mediated Cytotoxicity Independent of Thymus 451
IV. Humoral Factors Involved in Graft Rejection 456
B. Effector Cells and the Target Cell Injury 457
I. Morphology of Infiltrating “Lymphoid Cells” 457
 1. Small Lymphocytes 458
 2. Medium-Sized Lymphocytes 458
 3. Atypical Lymphocytes 458
 4. Large Lymphocytes 459
 5. Transformed Lymphocytes 459
 6. Lymphoid Killer Cells 460
 7. Monocytes ... 460
 8. Macrophages 461
II. Morphology of the Cell-Mediated Target Cell Destruction in vitro 464
 1. Membrane Contact 464
 2. Morphology of Cell-Mediated Target Cell Lysis 465
 3. Morphology of Antibody-Dependent Cell-Mediated Cytotoxicity 466
 4. Other Mechanisms of Cell-Mediated Target Cell Destruction 467
III. Features of Antibody-Mediated Injury 467
 1. Morphology of the Complement-Dependent Immune Cytolysis 468
 2. Relationship Between Immune Complexes and Clotting 468
 3. Pathogenesis of Tissue Injury Mediated by Immune Complexes 469
C. Pathways of Host Sensitization

I. Cellular Mechanisms
 1. Central Reactions
 2. Recirculation of Immunocompetent Cells

II. Pathways of Sensitization to Solid Organ Grafts
 1. Soluble Antigens
 2. Macrophage-Processed Antigen
 3. Peripheral Sensitization
 4. Passenger Leukocytes

D. Hyperacute Rejection

I. Pathogenesis

II. Pathology of the Hyperacute Rejection
 1. Kidney
 a) Course of Events
 b) Cellular Mechanisms and Mediators Involved in Hyperacute Rejection
 2. Heart
 3. Liver
 4. Lungs
 5. Pancreas

III. Nonimmunologically Caused Primary Graft Failure and Damage
 1. Pretransplantation Anoxemic Lesion
 2. Mechanical Traumatization
 3. Morphology of the Pretransplantation Ischemic and Mechanical Damage
 a) Kidney
 b) Heart
 c) Liver
 d) Lung
 e) Pancreas

E. Accelerated (Delayed Hyperacute) Rejection

F. Acute (Intermediate) Rejection

I. Pathogenesis

II. Particular Patterns of Acute Rejection
 1. Kidney
 2. Heart
 3. Liver
 4. Lung
 5. Pancreas
 6. Small Bowel

G. Chronic or Late Rejection

I. Arterial Obliterative Lesion

II. Interstitial Fibrosis, Parenchymal Atrophy and Chronic Cellular Infiltration

III. Chronic Glomerulopathy

H. Future Prospects of Organ Transplantation

I. Current Experience in Organ Transplantation

II. Histocompatibility Typing

III. Organ Preservation and Storage
 1. Simple Hypothermic Storage
 2. Short-Term Preservation
 3. Intermediate-Term Storage and Long-Term Preservation

IV. Artificial Organs

V. Modification of the Immune Response
 1. Immunosuppression
 2. Immunologic Enhancement
 3. Immunosuppressive Antibodies
 4. Immunologic Tolerance
Contents

C. Cellular Immunity .. 660
I. Bone Marrow Grafting .. 660
 1. Irradiation Dose ... 662
 a) Injury .. 662
 α) Hematopoietic .. 662
 β) Gastrointestinal 662
 γ) Central Nervous System (CNS) 663
 b) Conditioning of Recipients for Hematopoietic Grafting 663
 α) The Midlethal Dose (MLD) Effect 663
 β) Rejection of the Marrow Graft and "Reversal" .. 663
 γ) Exposure Rate Effects 664
 δ) Conditioning by Irradiation Other Than Total Body (TBI) 664
 ζ) Time of Marrow Infusion in Relation to Irradiation 664
 2. Histocompatibility Differences Between the Host and Donor 665
 3. The Presensitized Recipient 668
 4. Successful Hematopoietic Engraftment 669
 a) Evidence of Chimerism 669
 b) GVHD ... 670
 α) Pathology .. 670
 β) The Prevention and Treatment of GVHD 671
 c) Immunologic Reconstitution of Chimeras 673
 d) Long-Term Survivors as Examples of Irradiation Induced Immunologic Unresponsiveness: "True Tolerance" or "Enhancement Phenomenon"? 676
 e) Clinical Marrow Grafting Studies 680
 α) Marrow Grafting in Hematologic Malignancy 681
 β) Marrow Grafting in Aplastic Anemia 684
 γ) Conclusions and Summary of Outstanding Problems in the Field of Irradiation and Clinical Marrow Grafting 685
II. Other Organ Grafts .. 686
References .. 687

Immunosuppression by Antibodies. K. Wonigeit and R. Pichlmayr. With 4 Figures . 695

A. Introduction ... 695
B. Concepts of Immunosuppression by Antibodies 695
C. Xenogeneic Antilymphocyte Sera 698
 I. General Aspects ... 698
 II. Types of Xenogeneic Antilymphocyte Sera 699
 III. Effects on Lymphoid Cells in vitro 701
 IV. Effects on the Lymphatic System 702
 V. Immunosuppressive Activity of ALS 706
 1. Humoral Immunity 706
 2. Delayed Hypersensitivity 706
 3. Transplantation Immunity 706
 4. Autoimmune Phenomena 707
 5. Graft-Versus-Host Immunity 707
 VI. Cooperative Effects With Other Immunosuppressive Regimens 708
 VII. Assays for Immunosuppressive Potency 709
 VIII. Mode of Action .. 710
 IX. Side-Effects and Complications 711
 1. Toxic Effects .. 712
 2. Hyperergic Reactions 713
 3. Infections .. 713
 4. Neoplasms ... 714
 X. Immunosuppression with ALS in Humans 715
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2.4.</td>
<td>The Intra-Ocular Form</td>
<td>807</td>
</tr>
<tr>
<td>2.3.</td>
<td>In-Vitro Analogies</td>
<td>808</td>
</tr>
<tr>
<td>2.3.1.</td>
<td>The Mixed Lymphocyte Culture</td>
<td>808</td>
</tr>
<tr>
<td>2.3.2.</td>
<td>The Spleen Explant Test</td>
<td>809</td>
</tr>
<tr>
<td>3.</td>
<td>Clinical Observations</td>
<td>809</td>
</tr>
<tr>
<td>3.1.</td>
<td>"Spontaneous" GVHD in Humans</td>
<td>811</td>
</tr>
<tr>
<td>3.2.</td>
<td>GVHD After Bone Marrow Transplantation</td>
<td>812</td>
</tr>
<tr>
<td>3.2.1.</td>
<td>In Case of Primary Immuninsufficiency or Aplastic Anemia</td>
<td>812</td>
</tr>
<tr>
<td>3.2.2.</td>
<td>In Leukemias</td>
<td>812</td>
</tr>
<tr>
<td>3.2.3.</td>
<td>After Blood Transfusions</td>
<td>813</td>
</tr>
<tr>
<td>4.</td>
<td>Histopathology</td>
<td>814</td>
</tr>
<tr>
<td>4.1.</td>
<td>Mice</td>
<td>814</td>
</tr>
<tr>
<td>4.1.1.</td>
<td>Spleen</td>
<td>814</td>
</tr>
<tr>
<td>4.1.2.</td>
<td>Lymph Nodes</td>
<td>815</td>
</tr>
<tr>
<td>4.1.3.</td>
<td>Liver</td>
<td>816</td>
</tr>
<tr>
<td>4.1.4.</td>
<td>Skin</td>
<td>817</td>
</tr>
<tr>
<td>4.1.5.</td>
<td>Bone Marrow</td>
<td>817</td>
</tr>
<tr>
<td>4.1.6.</td>
<td>Other Tissues</td>
<td>817</td>
</tr>
<tr>
<td>4.2.</td>
<td>Rats</td>
<td>818</td>
</tr>
<tr>
<td>4.2.1.</td>
<td>Spleen</td>
<td>818</td>
</tr>
<tr>
<td>4.2.2.</td>
<td>Lymph Nodes</td>
<td>819</td>
</tr>
<tr>
<td>4.2.3.</td>
<td>Liver</td>
<td>819</td>
</tr>
<tr>
<td>4.2.4.</td>
<td>Skin</td>
<td>820</td>
</tr>
<tr>
<td>4.2.5.</td>
<td>Bone Marrow</td>
<td>821</td>
</tr>
<tr>
<td>4.2.6.</td>
<td>Other Tissue</td>
<td>824</td>
</tr>
<tr>
<td>4.3.</td>
<td>Chickens</td>
<td>825</td>
</tr>
<tr>
<td>4.4.</td>
<td>Other Animals</td>
<td>826</td>
</tr>
<tr>
<td>4.5.</td>
<td>Humans</td>
<td>827</td>
</tr>
<tr>
<td>4.5.1.</td>
<td>Spleen</td>
<td>827</td>
</tr>
<tr>
<td>4.5.2.</td>
<td>Lymph Nodes</td>
<td>828</td>
</tr>
<tr>
<td>4.5.3.</td>
<td>Liver</td>
<td>829</td>
</tr>
<tr>
<td>4.5.4.</td>
<td>Skin</td>
<td>830</td>
</tr>
<tr>
<td>4.5.5.</td>
<td>Gastrointestinal Tract</td>
<td>833</td>
</tr>
<tr>
<td>4.5.6.</td>
<td>Bone Marrow</td>
<td>834</td>
</tr>
<tr>
<td>4.5.7.</td>
<td>Remaining Tissue</td>
<td>834</td>
</tr>
<tr>
<td>4.5.8.</td>
<td>Remaining Tissue</td>
<td>834</td>
</tr>
<tr>
<td>5.</td>
<td>Hematology</td>
<td>835</td>
</tr>
<tr>
<td>5.1.</td>
<td>Mice</td>
<td>835</td>
</tr>
<tr>
<td>5.2.</td>
<td>Rats</td>
<td>836</td>
</tr>
<tr>
<td>5.3.</td>
<td>Other Species of Animals</td>
<td>836</td>
</tr>
<tr>
<td>5.4.</td>
<td>Humans</td>
<td>836</td>
</tr>
<tr>
<td>6.</td>
<td>Causal Pathogenesis</td>
<td>837</td>
</tr>
<tr>
<td>6.1.</td>
<td>Immunologic Factors</td>
<td>837</td>
</tr>
<tr>
<td>6.2.</td>
<td>Unspecific Factors</td>
<td>837</td>
</tr>
<tr>
<td>7.</td>
<td>Formal Pathogenesis</td>
<td>838</td>
</tr>
<tr>
<td>7.1.</td>
<td>Trigger Antigens</td>
<td>838</td>
</tr>
<tr>
<td>7.2.</td>
<td>Immunocompetent Lymphocytes</td>
<td>839</td>
</tr>
<tr>
<td>7.3.</td>
<td>Behaviour of Donor Lymphocytes</td>
<td>839</td>
</tr>
<tr>
<td>7.3.1.</td>
<td>Nidation</td>
<td>839</td>
</tr>
<tr>
<td>7.3.2.</td>
<td>Proliferation</td>
<td>840</td>
</tr>
<tr>
<td>7.3.3.</td>
<td>Cellular Interactions</td>
<td>840</td>
</tr>
<tr>
<td>7.4.</td>
<td>Behaviour of Host Cells</td>
<td>841</td>
</tr>
<tr>
<td>7.4.1.</td>
<td>Damages</td>
<td>841</td>
</tr>
<tr>
<td>7.4.2.</td>
<td>Reactive Hyperplasia and Allogeneic Effect</td>
<td>842</td>
</tr>
<tr>
<td>7.4.3.</td>
<td>Immune Suppression</td>
<td>843</td>
</tr>
<tr>
<td>7.5.</td>
<td>Mechanisms of Immune Regulations</td>
<td>844</td>
</tr>
<tr>
<td>8.</td>
<td>Therapeutic Influence</td>
<td>846</td>
</tr>
<tr>
<td>8.1.</td>
<td>Results of Experiments with Animals</td>
<td>846</td>
</tr>
</tbody>
</table>