R.-D. Reiss
M. Thomas

Statistical Analysis
of Extreme Values

from Insurance, Finance, Hydrology and Other Fields

Second edition

Birkhäuser Verlag
Basel · Boston · Berlin
Contents

Preface to the Second Edition .. v
Preface to the First Edition ... vii
Xtremes: An Overview and the Hierarchy xi
List of Special Symbols .. xix

I Modeling and Data Analysis

1 Parametric Modeling
 1.1 Applications of Extreme Value Analysis 3
 1.2 Observing Exceedances and Maxima 7
 1.3 Modeling by Extreme Value Distributions 14
 1.4 Modeling by Generalized Pareto Distributions 23
 1.5 Heavy and Fat-Tailed Distributions 30
 1.6 Quantiles, Transformations and Simulations 35
 1.7 Implementation in Xtremes 39

2 Diagnostic Tools
 2.1 Visualization of Data ... 43
 2.2 Excess and Hazard Functions 53
 2.3 Fitting Parametric Distributions to Data 60
 2.4 Q–Q and P–P Plots ... 65
 2.5 Trends, Seasonality and Autocorrelation 67
 2.6 The Auto-Tail-Dependence Function 77
 2.7 Clustering of Exceedances 78
 2.8 Implementation in Xtremes 82

II Statistical Inference in Parametric Models

3 An Introduction to Parametric Inference
 3.1 Estimation in Exponential, Gaussian and Student Models 92
 3.2 Confidence Intervals ... 98
 3.3 Test Procedures and p–Values 101
3.4 Inference in Poisson and Mixed Poisson Models 105
3.5 The Bayesian Estimation Principle 110
3.6 Implementation in Xtremes 115

4 Extreme Value Models
4.1 Estimation in Extremes Value Models 117
4.2 Testing Extreme Value Models 128
4.3 Extended Extreme Value Models and Related Models 130
4.4 Implementation in Xtremes 137

5 Generalized Pareto Models
5.1 Estimation in Generalized Pareto Models 139
5.2 Testing Generalized Pareto Models 153
5.3 Statistics in Poisson–GP Models 155
5.4 Extending Generalized Pareto Models 157
5.5 Implementation in Xtremes 161

6 Advanced Statistical Analysis
6.1 Non–Random and Random Censoring 163
6.2 Models of Time Series, the Extremal Index 168
6.3 Statistics for Sum–Stable Distributions (coauthored by J.P. Nolan) .. 174
6.4 Rates of Convergence (coauthored by E. Kaufmann) 183
6.5 Conditional Extremes ... 190
6.6 Implementation in Xtremes 195

7 Statistics for Poisson Processes
7.1 Modeling Exceedances by Poisson Processes 197
7.2 Mean and Median T–Year Return Levels 200
7.3 ML and Bayesian Estimation in Models of Poisson Processes 202
7.4 Implementation in Xtremes 207

III Elements of Multivariate Statistical Analysis
8 Basic Multivariate Concepts and Visualization
8.1 An Introduction to Basic Multivariate Concepts 211
8.2 Visualizing Multivariate Data 216
8.3 Multivariate Parametric Models 221
8.4 Multivariate Sum–Stable Distributions (coauthored by J.P. Nolan) .. 224
8.5 Implementation in Xtremes and MVSTABLE 229

9 Multivariate Maxima
9.1 Nonparametric and Parametric Extreme Value Models 231
9.2 The Gumbel–McFadden Model 240
9.3 Estimation in Extreme Value Models 243
9.4 Implementation in Xtremes 248
10 Bivariate Peaks Over Threshold
(coauthored by M. Falk)
10.1 Nonparametric and Parametric Generalized Pareto Models 249
10.2 Estimation of the Canonical Dependence Function 254
10.3 The Point Process Approach to the POT Method 257
10.4 Implementation in Xtremes 258

IV Topics in Hydrology, Insurance and Finance

11 Flood Frequency Analysis
(coauthored by J.R.M. Hosking)
11.1 Analyzing Annual Flood Series 261
11.2 Analyzing Partial Duration Series 262
11.3 Regional Flood Frequency Analysis 267
11.4 The L-Moment Estimation Method 270
11.5 A Bayesian Approach to Regional Estimation 274
11.6 Implementation in Xtremes 276

12 The Impact of Large Claims on Actuarial Decisions
(coauthored by M. Radtke)
12.1 Numbers of Claims and the Total Claim Amount 280
12.2 Estimation of the Net Premium 283
12.3 Segmentation According to the Probable Maximum Loss 287
12.4 The Risk Process and the T-Year Initial Reserve 294
12.5 Elements of Ruin Theory 300
12.6 Credibility (Bayesian) Estimation of the Net Premium 302
12.7 Implementation in Xtremes 305

13 Extreme Returns in Asset Prices
(coauthored by C.G. de Vries and S. Caserta)
13.1 Stylized Facts and Historical Remarks 310
13.2 Empirical Evidence in Returns Series 313
13.3 Parametric Estimation of the Tails of Returns 316
13.4 The Profit/Loss Variable and Risk Parameters 320
13.5 Evaluating the Value–at–Risk (VaR) 323
13.6 VaR for a Single Derivative Contract 327
13.7 The Capital–at–Risk (CaR) 331
13.8 ARCH and Stochastic Volatility Structures 332
13.9 Implementation in Xtremes 338

14 Other Important Applications
14.1 Extremal Corrosion Engineering 341
14.2 About the Longevity of Humans (coauthored by E. Kaufmann) . 345
14.3 Implementation in Xtremes 349
V Case Studies in Extreme Value Analysis

Study 1 Long-Trend Study for Ozone Data from Mexico City
 (J.A. Villaseñor, H. Vaquera and R.-D. Reiss) 353

Study 2 Models for Extremes of Non-Stationary
 Pollution Series (S. Coles) 359

Study 3 Low Temperatures, Global Warming?
 (D. Dietrich and J. Hüsler) 367

Study 4 Extreme Value Theory in Actuarial Consulting:
 Windstorm Losses in Central Europe (D. Pfeifer) 373

Study 5 Vrancea Earthquakes Using Prior Information
 (P. van Gelder, D. Lungu and M. Thomas) 379

Appendix: Xtremes and StatPascal

Xtremes and StatPascal Within RiskTec 387

A The Menu System
 A.1 Installation 391
 A.2 Becoming Acquainted with the Menu System 392
 A.3 Technical Aspects of Xtremes 396
 A.4 List of Windows and Xtremes Commands 400

B UserFormula Facilities 405

C The StatPascal Programming Language
 C.1 Programming with StatPascal: First Steps 411
 C.2 Plotting Curves 416
 C.3 Generating and Accessing Data 419
 C.4 Further StatPascal Techniques 422
 C.5 StatPascal Runtime Environment 426

Author Index 429

Subject Index 433

Bibliography 441