Genomic Regulatory Systems
Development and Evolution

Eric H. Davidson
Division of Biology
California Institute of Technology
Pasadena, California

Technische Universität Darmstadt
FACHBEREICH 10 — BIOLOGIE
— Bibliothek —
Schnittspahnstraße 10
D-64287 Darmstadt
Inv.-Nr. 14804

ACADEMIC PRESS
A Harcourt Science and Technology Company
San Diego San Francisco New York Boston London Sydney Tokyo
CONTENTS

Preface ix

1. Regulatory Hardwiring: A Brief Overview of the Genomic Control Apparatus and its Causal Role in Development and Evolution

The Regulatory Apparatus Encoded in the DNA 2
 The Genes and Gene Regulatory Components of Animal Genomes 2
 Overview of Regulatory Architecture 7
Gene Regulatory Functions in Development 11
 The Regulatory Demands of Development 11
 Pattern Formation 13
 Terminal Differentiation 16
Genomic Regulatory Sequence and the Evolution of Morphological Features 18
 Regulatory Evolution, and Evolution in General 19
 Bilaterian Phylogeny 20

2. Inside the cis-Regulatory Module: Control Logic, and How Regulatory Environment is Transduced into Spatial Patterns of Gene Expression

Operating Principles for cis-Regulatory Systems that Mediate Developmental Specification Events 26
Spatial Repression in cis-Regulatory specification 28
 Two Very Different Examples of Similar Import 28
 cis-Regulatory Design for Autonomous Modular Function 35
 The Generality of Repression 41
Downstream of Specification 44
 Some Examples 45
3. Regulation of Direct Cell-Type Specification in Early Development

The Basic Package for Bilaterian Embryogenesis: Type 1 Specification Processes 64
Regulatory Mechanism in Territorial Specification of the Sea Urchin Embryo 66
The Definitive Territories of the Embryo 66
Early Transcriptional Activation of Cell Type-specific Genes 71
Initial Regulatory Processes 74
Multiple Inputs for Endomesoderm Specification 75
Regulatory Mechanisms Controlling Specification in Ascidian Embryos 81
Territorial Specification 81
Mechanisms and Pathways in Mesoderm Specification 85
Caenorhabditis elegans: The Genomic Apparatus for Endoderm Specification 92
Endoderm Specification 93
The Network of Zygotic cis-Regulatory Interactions Required for Endoderm Specification 96
Short Summary: Quality of Type 1 Regulatory Networks 101

4. The Secret of the Bilaterians: Abstract Regulatory Design in Building Adult Body Parts

The Evolutionary Significance of “Pattern Formation” 103
The First Step: Transcriptional Definition of the Domain of the Body Part 105
Morphological Pieces and Regulatory Subpatterns 110
Heart Parts 110
Forelimb and Hindlimb Buds 111
Transcriptional Domains in the Gut Endoderm 115
Patterns in the Developing Hindbrain 117
Appendage Parts and Transcriptional Patterns in *Drosophila* Imaginal Discs

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glimpses of How It Works</td>
<td>122</td>
</tr>
<tr>
<td>Transcriptional Domains and the Pattern Program for the Drosophila</td>
<td></td>
</tr>
<tr>
<td>Wing Disc: Modularity and cis-Regulatory Inputs</td>
<td>123</td>
</tr>
<tr>
<td>Patterning the Heart Progenitor Field in Drosophila</td>
<td>129</td>
</tr>
<tr>
<td>Encoding Hindbrain Regulatory Patterns</td>
<td>131</td>
</tr>
<tr>
<td>The Role of Signaling</td>
<td>140</td>
</tr>
<tr>
<td>The Last Routines: Calling in Differentiation Programs</td>
<td>146</td>
</tr>
<tr>
<td>Specification of Peripheral Nervous System Elements in the Drosophila</td>
<td>147</td>
</tr>
<tr>
<td>Wing</td>
<td></td>
</tr>
<tr>
<td>Installation of Cell Type-specific Differentiation Programs in the Pituitary</td>
<td>152</td>
</tr>
<tr>
<td>Concluding Remark</td>
<td>153</td>
</tr>
</tbody>
</table>

5. Changes that Make New Forms: Gene Regulatory Systems and the Evolution of Body Plans

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Some Examples: Evolutionary Cooption of Genes to New Pattern Formation Functions</td>
<td>158</td>
</tr>
<tr>
<td>box Gene Functions and Cooptions of the box Cluster Patterning System</td>
<td>164</td>
</tr>
<tr>
<td>A Specific Case of A/P Patterning: How a box Gene Does Its Job</td>
<td>166</td>
</tr>
<tr>
<td>Evolutionary Changes in box Gene Expression in the Arthropods</td>
<td>167</td>
</tr>
<tr>
<td>Off the A/P Axis</td>
<td>174</td>
</tr>
<tr>
<td>Colinear Expression of box Genes in the Somatocoels of Sea Urchin Larvae</td>
<td>178</td>
</tr>
<tr>
<td>Small Changes</td>
<td>183</td>
</tr>
<tr>
<td>Evolutionary Origins of Body Parts</td>
<td>188</td>
</tr>
<tr>
<td>Polarity in Body Part Evolution</td>
<td>188</td>
</tr>
<tr>
<td>The Case of pax6 and Some Other Amazing Examples</td>
<td>191</td>
</tr>
<tr>
<td>Concluding Comment: Conceiving Evolution as a Process of Change in Regulatory Gene Networks</td>
<td>201</td>
</tr>
</tbody>
</table>

References 203

Index 245