## Contents

Introduction to Power Diode Lasers  
Peter Unger ................................................................. 1  

1. Fundamental Aspects of Diode Lasers ......................... 1  
   1.1. Emission and Absorption in Semiconductors ............. 1  
   1.2. Basic Elements of Semiconductor Diode Lasers .......... 8  
   1.3. Optical Gain and Threshold Condition ................. 10  
   1.4. Edge- and Surface-Emitting Lasers .................... 13  
   1.5. Lateral Confinement ...................................... 15  
   1.6. Quantum-Well Structures ............................... 18  

2. Fabrication Technology ............................................. 20  

3. Optical Waveguides and Resonators ............................. 24  
   3.1. Effective Refractive Index ............................ 24  
   3.2. Normalized Propagation Diagrams ................... 26  
   3.3. Optical Near- and Far-Field Patterns ................. 28  
   3.4. Fabry-Perot Resonator ............................... 31  
   3.5. Diode Laser Spectrum .................................. 33  
   3.6. Mirror Coatings ....................................... 34  

4. Rate Equations and High-Power Operation .................... 37  
   4.1. Rate Equations for Electronic Carriers and Photons .... 37  
   4.2. Electrical and Optical Characteristics of Power Diode Lasers ...... 41  
   4.3. Design Considerations for High-Power Operation ......... 46  

List of Symbols ...................................................... 50  
List of Constants .................................................. 51  
Abbreviations for Indices .......................................... 51  
References ........................................................... 52
Dynamics of High-Power Diode Lasers
Edeltraud Gehrig and Ortwin Hess ........................................ 55

   1.1. Role of Microscopic Spatio-Temporal Properties
       in Macroscopic Laser Characteristics .......................... 57
   1.2. Optical-Field Dynamics .......................... 59
   1.3. Physics of the Active Semiconductor Medium ................. 63
2. Spatio-Temporal Dynamics of High-Power Diode Lasers .......... 67
   2.1. Optical Injection ........................................ 67
   2.2. Influence of Laser Geometry and Facet Reflectivities ....... 68
   2.3. Dynamics of Optical Emission Characteristics ................. 71
   2.4. Spatial and Spectral Carrier Dynamics ....................... 73
   2.5. Spatial and Spectral Refractive-Index and Gain Dynamics .... 76
3. Conclusion ........................................ 78
List of Symbols ........................................ 79
References ........................................ 80

Epitaxy of High-Power Diode-Laser Structures
Markus Weyers, Arnab Bhattacharya, Frank Bugge and Arne Knauer ... 83

1. Growth Methods ........................................ 86
   1.1. Molecular-Beam Epitaxy and Its Variants ..................... 87
   1.2. Metalorganic Vapor-Phase Epitaxy .......................... 91
   1.3. Comparison of MBE and MOVPE .......................... 94
2. Materials for High-Power Diode Lasers ..................................... 96
   2.1. GaAs and AlGaAs ........................................ 96
   2.2. GaInP and AlGaInP ........................................ 98
   2.3. GaInAsP on GaAs ........................................ 101
   2.4. InP, GaInAs(P) and AlGaInAs ..................................... 102
3. Doping ........................................ 103
   3.1. N-Type Doping ........................................ 103
   3.2. P-Type Doping ........................................ 103
4. Heterostructures ........................................ 106
5. Strained Quantum Wells ........................................ 107
   5.1. Pseudomorphic Growth and Strain Relaxation ..................... 107
   5.2. Strain Compensation ........................................ 109
6. Device Results ........................................ 110
List of Acronyms ........................................ 113
References ........................................ 114
GaAs Substrates for High-Power Diode Lasers
Georg Müller, Patrick Berwian, Eberhard Buhrig
and Berndt Weinert .............................................. 121

1. Selection of the Growth Method .................................. 122
   1.1. Important Features of GaAs Crystal-Growth Methods ........... 122
   1.2. Liquid-Encapsulated Czochralski (LEC) and Vapor-Controlled Czochralski (VCZ) Techniques .......... 124
   1.3. Thermal Stress and Dislocation Density ...................... 124
   1.4. Methods of Directional Solidification:
        Gradient Freeze and Bridgman Variants ..................... 126

2. Physico-Chemical Features of the VGF Technology
   for the Growth of Si-Doped Low-EPD GaAs Single Crystals ........ 129
   2.1. Discussion of VGF Variants .................................. 129
   2.2. Important Chemical Reactions in the VGF Growth
        of Si-Doped GaAs ........................................... 132
   2.3. VGF Furnace Concepts ........................................ 139
   2.4. Preparation of Starting Materials and Procedure
        of VGF Growth ............................................. 140

3. Numerical Modeling for VGF-Process Optimization ................. 141
   3.1. Principles and Strategy of the Numerical Modeling ............ 142
   3.2. Optimization of VGF-Growth Equipment ....................... 146
   3.3. Optimization of Growth Runs by Inverse Modeling .......... 146

4. Crystal and Wafer Properties .................................... 154
   4.1. Wafering .................................................... 156
   4.2. Electrical Characterization and Silicon Doping .............. 156
   4.3. Optical Characterization by Infrared
        and Photoluminescence Mapping ................................ 156
   4.4. Residual Dislocations ....................................... 158

5. Conclusion .......................................................... 166
List of Symbols ..................................................... 167
List of Acronyms .................................................... 168
References ............................................................ 169

High-Power Broad-Area Diode Lasers and Laser Bars
Götz Erbert, Arthur Bärwolff, Jürgen Sebastian and Jens Tomm ...... 173

1. Epitaxial Waveguide Structures for High-Power Diode Lasers .... 175
   1.1. The Large Optical Cavity (LOC) Concept ....................... 175

2. Technology for Broad-Area Diode Lasers and Laser Bars .......... 184
   2.1. Processing of Contact Windows ................................ 185
   2.2. Processing of Mesa Structures ................................ 187
   2.3. Metallization ................................................ 190
   2.4. Laser-Bar Preparation ....................................... 192
   2.5. Facet Coating ............................................... 194
3. Behavior of High-Power CW Diode Lasers ........................................ 199
   3.1. Influence of Heat on Laser Performance .................................. 199
   3.2. Simulation of Temperature Distribution ...................................... 201
   3.3. Recent Results ...................................................................... 213
List of Symbols ............................................................................. 216
References .................................................................................. 218

Properties and Frequency Conversion
of High-Brightness Diode-Laser Systems
Klaus-Jochen Boller, Bernard Beier and Richard Wallenstein .......... 225

1. Beam Quality ........................................................................... 228
   1.1. The Diffraction Parameter \( M^2 \) .............................................. 230
   1.2. Measurement of the Wavefront ................................................. 232
2. Single-Stripe Diode Lasers ...................................................... 235
3. High-Power Diode Lasers ......................................................... 238
4. Diode Amplifiers ..................................................................... 239
5. AlGaAs Diode-MOPA Systems .................................................. 241
6. Diode-MOPA Systems Based on InGaAs ..................................... 245
7. Nonlinear Frequency Conversion
   with High-Brightness Diode-MOPA Systems ................................... 249
   7.1. Second-Harmonic Generation ................................................... 249
   7.2. Diode-Pumped Optical Parametric Oscillators ......................... 253
8. Summary ................................................................................ 256
List of Symbols and Abbreviations .................................................. 257
References ................................................................................ 259

Tapered High-Power, High-Brightness Diode Lasers:
Design and Performance
Michael Mikulla ................................................................. 265

1. Introduction ........................................................................... 266
2. Theoretical Background ............................................................ 267
3. BPM Simulations ................................................................. 269
4. Epitaxial Layer Structures ........................................................ 270
   4.1. Comparison of LMG and LOC Structures .............................. 271
5. Broad-Area Diode Lasers with LMG Layer Structures .................. 272
6. Fabrication of Tapered Devices ................................................. 273
7. Experimental Results .............................................................. 274
   7.1. Tapered Laser Oscillators ...................................................... 274
   7.2. Tapered Laser Amplifiers ...................................................... 276
   7.3. Tunable High-Brightness Diode-Laser Systems ....................... 279
   7.4. Tapered Diode-Laser Arrays ............................................... 282
8. Manufacturability .................................................................. 284
2.4. High-Power Laser Operation ........................................... 381
2.5. Fiber-Laser Emission in the Visible Spectral Region ............ 384
3. Thin-Disk Laser .................................................................. 386
   3.1. Design Considerations .................................................. 387
   3.2. Numerical Simulation of the Thin-Disk Laser .................... 388
   3.3. Results and Discussion ................................................. 393
   3.4. Conclusion .................................................................... 403
List of Symbols ....................................................................... 404
References ............................................................................. 405

Index .................................................................................... 409