STUDIES IN GEOMETRY

Leonard M. Blumenthal
University of Missouri

Karl Menger
Illinois Institute of Technology

W. H. FREEMAN AND COMPANY
San Francisco
CONTENTS

Part 1 LATTICE GEOMETRIES

1. PRELIMINARY NOTIONS.
ALGEBRAIC AND GEOMETRIC STRUCTURES.
SPACES AND GEOMETRIES 3

1.1 Introductory remarks 3
1.2 The set concept 4
1.3 Set algebra 6
1.4 Algebraic structure. Lattices 7
1.5 Lattices as partially ordered sets 10
1.6 Special kinds of lattices. Boolean algebra,
modular, and normed lattices 12
1.7 Geometric structure. Spaces 14
1.8 Examples of metric spaces 17
1.9 Definitions of some basic concepts 22
1.10 What is a geometry? 25
1.11 Some properties of metric space 29
1.12 Additional properties of metric space 32
2 GEOMETRIC ASPECTS
OF LATTICE THEORY 41

2.1 The principle of duality 42
2.2 Finite lattices. Sum-relative and product-relative complements 43
2.3 Conditions for modular lattices 46
2.4 The principal chain theorem 50
2.5 Distributive lattices. Elementary properties 53
2.6 Normed lattices. A union of algebra and geometry 57
2.7 Betweenness in normed lattices 60
2.8 Betweenness in general lattices. Norm conditions for distributivity 65
2.9 Mappings of lattices. Elementary properties 67
2.10 Convex extension of normed lattices 70
2.11 Completion of normed lattices 71
2.12 Complete convex extension of normed lattices 77
2.13 Metric characterization of normed lattices. Study of the associated metric space 78
2.14 Geometrical characterization of distributive lattices 82
2.15 σ-complete lattices. Sequential topology 85

3 DISTANCE GEOMETRY AND TOPOLOGY
OVER A BOOLEAN ALGEBRA 89

3.1 Introductory remarks 89
3.2 A Boolean metric. Group of motions and congruence order of Boolean space B 91
3.3 \mathcal{P}-linear and \mathcal{Q}-linear m-tuples 95
3.4 Special quadruples. Ptolemaic property of Boolean space B 98
3.5 Fundamental linearity theorem for Boolean space B 103
3.6 Segments in Boolean space B 106
3.7 Characterization of the Boolean metric 114
3.8 Convex Boolean metric space. An imbedding theorem 116
3.9 Some topological properties of maximal chains 118
3.10 Boolean metric spaces over separable Boolean algebras 121
3.11 Arcs in a Boolean metric space B 123
3.12 Further study of segments 126
3.13 Segment-like arcs 129
Part 2 PROJECTIVE AND RELATED STRUCTURES

4 AN AXIOMATIC BASIS FOR PROJECTIVE GEOMETRY 135

4.1 Introduction 135
4.2 Projective structures 138
4.3 The part relation and modularity 140
4.4 Points and hyperplanes 144
4.5 Regular elements 147
4.6 Basic sets 151
4.7 The set of all regular elements of a projective structure 154
4.8 Dimension 160
4.9 Dualization 162
4.10 Associativity in projective structures 163
4.11 Finite-dimensional projective structures and their products 165
4.12 Projective spaces 169

5 PROJECTIVE AND RELATED PLANES AND THREE-DIMENSIONAL SPACES 176

5.1 The projective plane 176
5.2 Triangles and complete quadruples 184
5.3 The affine plane 186
5.4 A self-dual fragment of the affine plane and its application to Galilean kinematics 189
5.5 The three-dimensional projective space 193
5.6 Desargues' Theorem 198
5.7 Arguesian projective and affine planes 203
5.8 Projectivities 207
5.9 Dandelin spaces 209
5.10 Pappus planes 212
5.11 Conics 216
5.12 Regions and hyperbolic planes 220
5.13 Strips with verticality and their application to Einstein-Minkowski Kinematics 228

Part 3 METRIC GEOMETRY

6 SELECTED METRIC PROPERTIES OF BANACH SPACES. METRIC SEGMENTS AND LINES 237

6.1 The metric characterization program 237
6.2 Banach spaces with unique metric lines 238
6.3 Six basic metric properties of \mathfrak{B} spaces 240
6.4 Metric segments 244
6.5 Metric lines 247
6.6 Uniqueness of metric lines 249
xii CONTENTS

7 METRIC POSTULATES FOR BANACH SPACES
WITH UNIQUE METRIC LINES 252
7.1 Extension of the Young property 252
7.2 Pasch and Menelaus triangle theorems 259
7.3 Definition and properties of planes of \mathbf{M}_γ 263
7.4 Further properties of planes 266
7.5 The theory of parallels in a space \mathbf{M}_γ 272
7.6 Metric characterization of Banach spaces
with unique metric lines 274

8 METRIC POSTULATES FOR EUCLIDEAN
SPACE 279
8.1 The weak pythagorean property 279
8.2 Properties of foot of a point on a line. Perpendicularity 280
8.3 Spaces with the two-triple and the isosceles triangle
properties 284
8.4 Equidistant loci in the plane 287
8.5 Reflections and the pythagorean property 290
8.6 Metric axiomatization of euclidean spaces of finite
or infinite dimensions 292

9 INTEGRAL GEOMETRY OF METRIC
ARCS 299
9.1 Introductory remarks. The n-lattice theorem 299
9.2 Spread of a homeomorphism. Arc length as
a Riemann integral. Ratio of arc to chord 302
9.3 Lattices and arc length 307
9.4 The problem of unique n-lattices. The obtuse angle
property Ω 309
9.5 Metric continua with the obtuse angle property Ω 311
9.6 Metric arcs with property Ω. Uniqueness of n-lattices 312
9.7 Metric arcs with property Ω^* 316
10 DIFFERENTIAL GEOMETRY OF METRIC ARCS 319
10.1 Metrizations of curvature 319
10.2 Comparison of two curvature metrizations 322
10.3 Further comparison of metric curvatures. Metric ptolemaic space 326
10.4 Equivalence of $k_M(p)$ and $k_H(p)$ for metric ptolemaic arcs 329
10.5 Metric arcs of zero curvature. A metric differential characterization of metric segment 334
10.6 Curve theory in classical differential geometry. Equivalence of metric and classical curvatures 337
10.7 Metric torsion τ_A 342
10.8 Metric torsion τ_B 346
10.9 A strengthened form of τ_B 347
10.10 Local metric characterization of plane continua 349
10.11 Biregular arcs of E_3 352
10.12 Fundamental theorem of curve theory 355

11 METRIZATIONS OF SURFACE CURVATURE 362
11.1 Introductory remarks 362
11.2 Descriptive remarks concerning Gauss curvature 363
11.3 Wald surface curvature 365
11.4 Some properties of spaces of constant Gauss curvature 367
11.5 Properties of a regular neighborhood of a point 373
11.6 Identification of Gauss and Wald curvatures 381
11.7 Rinow curvature 382
11.8 Comparison of Wald and Rinow curvatures 383

Part 4 CURVE THEORY

12 CLASSICAL DEFINITIONS OF CURVES 391
12.1 The problem 391
12.2 The quantitative approach 392
12.3 Curves as trajectories 398
12.4 Characterizations of trajectories 403
12.5 Irreducible continua 413
12.6 Arcs 416
12.7 Arcwise connectedness 421
12.8 Unions of arcs 425
12.9 On n-connected graphs 427
12.10 Cantor curves 431
13 INTRODUCTION TO MODERN CURVE THEORY 436

13.1 The definition of curves 436
13.2 Ramification order 442
13.3 Immediate consequences of the definitions 444
13.4 The frontiers of open sets 447
13.5 The set of end points and its complement 450
13.6 The irregularity set 453
13.7 The irrationality set 456
13.8 The union of curves 462
13.9 Decomposition properties of curves 468
13.10 On regular curves 471
13.11 The points of finite order 473

14 THE PROPRIETY OF THE MODERN CURVE CONCEPT 480

14.1 Each plane curve is a Cantor curve 481
14.2 A second proof 485
14.3 Each Cantor curve is a curve 493
14.4 Remarks about analytic complex functions 497

15 THE UNIVERSAL CURVE 501

15.1 The definition of U* 501
15.2 Homologous ramification systems 503
15.3 The universality of U* 505

INDEX 507