PRINCIPLES OF NEURAL SCIENCE

Fourth Edition

Edited by
ERIC R. KANDEL
JAMES H. SCHWARTZ
THOMAS M. JESSELL

Center for Neurobiology and Behavior
College of Physicians & Surgeons of Columbia University
and
The Howard Hughes Medical Institute

Art direction by
Sarah Mack and Jane Dodd

McGraw-Hill
Health Professions Division
Contents in Brief

Part I
The Neurobiology of Behavior

1 The Brain and Behavior 5
2 Nerve Cells and Behavior 19
3 Genes and Behavior 36

Part II
Cell and Molecular Biology of the Neuron

4 The Cytology of Neurons 67
5 Synthesis and Trafficking of Neuronal Protein 88
6 Ion Channels 105
7 Membrane Potential 125
8 Local Signaling: Passive Electrical Properties of the Neuron 140
9 Propagated Signaling: The Action Potential 150

Part III
Elementary Interactions Between Neurons: Synaptic Transmission

10 Overview of Synaptic Transmission 175
11 Signaling at the Nerve-Muscle Synapse: Directly Gated Transmission 187
12 Synaptic Integration 207
13 Modulation of Synaptic Transmission: Second Messengers 229
14 Transmitter Release 253
15 Neurotransmitters 280
16 Diseases of Chemical Transmission at the Nerve-Muscle Synapse: Myasthenia Gravis 298

Part IV
The Neural Basis of Cognition

17 The Anatomical Organization of the Central Nervous System 317
18 The Functional Organization of Perception and Movement 337
19 Integration of Sensory and Motor Function: The Association Areas of the Cerebral Cortex and the Cognitive Capabilities of the Brain 349
20 From Nerve Cells to Cognition: The Internal Cellular Representation Required for Perception and Action 381

Part V
Perception

21 Coding of Sensory Information 411
22 The Bodily Senses 430
23 Touch 451
24 The Perception of Pain 472
25 Constructing the Visual Image 492
<table>
<thead>
<tr>
<th>Part VI</th>
<th>Part VIII</th>
</tr>
</thead>
<tbody>
<tr>
<td>Visual Processing by the Retina 507</td>
<td>The Induction and Patterning of the Nervous System 1019</td>
</tr>
<tr>
<td>Central Visual Pathways 523</td>
<td>The Generation and Survival of Nerve Cells 1041</td>
</tr>
<tr>
<td>Perception of Motion, Depth, and Form 548</td>
<td>The Guidance of Axons to Their Targets 1063</td>
</tr>
<tr>
<td>Color Vision 572</td>
<td>The Formation and Regeneration of Synapses 1087</td>
</tr>
<tr>
<td>Hearing 590</td>
<td>Sensory Experience and the Fine-Tuning of Synaptic Connections 1115</td>
</tr>
<tr>
<td>Sensory Transduction in the Ear 614</td>
<td>Sexual Differentiation of the Nervous System 1131</td>
</tr>
<tr>
<td>Smell and Taste: The Chemical Senses 625</td>
<td>Aging of the Brain and Dementia of the Alzheimer Type 1149</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Part VII</th>
<th>Part IX</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Organization of Movement 653</td>
<td>Language and the Aphasias 1169</td>
</tr>
<tr>
<td>The Motor Unit and Muscle Action 674</td>
<td>Disorders of Thought and Volition: Schizophrenia 1188</td>
</tr>
<tr>
<td>Diseases of the Motor Unit 695</td>
<td>Disorders of Mood: Depression, Mania, and Anxiety Disorders 1209</td>
</tr>
<tr>
<td>Spinal Reflexes 713</td>
<td>Learning and Memory 1227</td>
</tr>
<tr>
<td>Locomotion 737</td>
<td>Cellular Mechanisms of Learning and the Biological Basis of Individuality 1247</td>
</tr>
<tr>
<td>Voluntary Movement 756</td>
<td></td>
</tr>
<tr>
<td>The Control of Gaze 782</td>
<td></td>
</tr>
<tr>
<td>The Vestibular System 801</td>
<td></td>
</tr>
<tr>
<td>Posture 816</td>
<td></td>
</tr>
<tr>
<td>The Cerebellum 832</td>
<td></td>
</tr>
<tr>
<td>The Basal Ganglia 853</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Appendices</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Current Flow in Neurons 1280</td>
</tr>
<tr>
<td>B Ventricular Organization of Cerebrospinal Fluid: Blood-Brain Barrier, Brain Edema, and Hydrocephalus 1288</td>
</tr>
<tr>
<td>C Circulation of the Brain 1302</td>
</tr>
<tr>
<td>D Consciousness and the Neurobiology of the Twenty-First Century 1317</td>
</tr>
</tbody>
</table>

Index 1321
Contents

Preface xxxv
Acknowledgments xxxvii
Contributors xxxix

Part I
The Neurobiology of Behavior

1 The Brain and Behavior 5
Eric R. Kandel
Two Opposing Views Have Been Advanced on the Relationship Between Brain and Behavior 6
The Brain Has Distinct Functional Regions 7
Cognitive Functions Are Localized Within the Cerebral Cortex 9
Affective Traits and Aspects of Personality Are Also Anatomically Localized 14
Mental Processes Are Represented in the Brain by Their Elementary Processing Operations 15
Selected Readings 17
References 17

2 Nerve Cells and Behavior 19
Eric R. Kandel
The Nervous System Has Two Classes of Cells 20
Glial Cells Are Support Cells 20
Nerve Cells Are the Main Signaling Units of the Nervous System 21
Nerve Cells Form Specific Signaling Networks That Mediate Specific Behaviors 25
Signaling Is Organized in the Same Way in All Nerve Cells 27
The Input Component Produces Graded Local Signals 28
The Trigger Component Makes the Decision to Generate an Action Potential 29
The Conductile Component Propagates an All-or-None Action Potential 31
The Output Component Releases Neurotransmitter 31
The Transformation of the Neural Signal From Sensory to Motor is Illustrated by the Stretch Reflex Pathway 32
Nerve Cells Differ Most at the Molecular Level 33
Nerve Cells Are Able to Convey Unique Information Because They Form Specific Networks 33
The Modifiability of Specific Connections Contributes to the Adaptability of Behavior 34
Selected Readings 34
References 35

3 Genes and Behavior 36
T. Conrad Gilliam, Eric R. Kandel, Thomas M. Jessell
Genetic Information Is Stored in Chromosomes 37
Gregor Mendel’s Work Led to the Delineation of the Relationship Between Genotype and Phenotype 38
The Genotype Is a Significant Determinant of Human Behavior 40
Single Genes Alleles Can Encode Normal Behavior Variations in Worms and Flies 42
Mutations in Single Genes Can Affect Certain Behaviors in Flies 42
Defects in Single Genes Can Have Profound Effects on Complex Behaviors in Mice 47
Mutations in the Gene Encoding Leptin Affect Feeding Behavior 47
Mutations in the Gene Encoding a Serotonergic Receptor Intensify Impulsive Behavior 50
7 Membrane Potential

John Koester, Steven A. Siegelbaum

The Resting Membrane Potential Results From the Separation of Charges Across the Cell Membrane

The Resting Membrane Potential Is Determined by Resting Ion Channels

- Resting Channels in Glial Cells Are Selective for Potassium Only
- Resting Channels in Nerve Cells Are Selective for Several Ion Species
- Passive Flux of Sodium and Potassium Is Balanced by Active Pumping of the Ions
- Chloride Ions May Be Passively Distributed

The Balance of Ion Fluxes That Gives Rise to the Resting Membrane Potential Is Abolished During the Action Potential

The Contributions of Different Ions to the Resting Membrane Potential Can Be Quantified by the Goldman Equation

The Functional Properties of the Neuron Can Be Represented in an Electrical Equivalent Circuit

An Overall View

8 Local Signaling: Passive Electrical Properties of the Neuron

John Koester, Steven A. Siegelbaum

Input Resistance Determines the Magnitude of Passive Changes in Membrane Potential

Membrane Capacitance Prolongs the Time Course of Electrical Signals

Membrane and Axoplasmic Resistance Affect the Efficiency of Signal Conduction

Large Axons Are More Easily Excited Than Small Axons by Extracellular Current Stimuli

Passive Membrane Properties and Axon Diameter Affect the Velocity of Action Potential Propagation

An Overall View

9 Propagated Signaling: The Action Potential

John Koester, Steven A. Siegelbaum

The Action Potential Is Generated by the Flow of Ions Through Voltage-Gated Channels

- Sodium and Potassium Currents Through Voltage-Gated Channels Are Recorded With the Voltage Clamp
- Voltage-Gated Sodium and Potassium Conductances Are Calculated From Their Currents
- The Action Potential Can Be Reconstructed From the Properties of Sodium and Potassium Channels

Variations in the Properties of Voltage-Gated Ion Channels Increase the Signaling Capabilities of Neurons

An Overall View

Selected Readings

References
Part III
Elementary Interactions Between Neurons: Synaptic Transmission

10 Overview of Synaptic Transmission ... 175
Eric R. Kandel, Steven A. Siegelbaum

Synapses Are Either Electrical or Chemical 175
Electrical Synapses Provide Instantaneous Signal Transmission 177
Gap-Junction Channels Connect Communicating Cells at an Electrical Synapse 178
Electrical Transmission Allows the Rapid and Synchronous Firing of Interconnected Cells 180
Gap Junctions Have a Role in Glial Function and Disease 180

Chemical Synapses Can Amplify Signals 182
Chemical Transmitters Bind to Postsynaptic Receptors 183
Postsynaptic Receptors Gate Ion Channels Either Directly or Indirectly 185

Selected Readings 185
References 185

11 Signaling at the Nerve-Muscle Synapse: Directly Gated Transmission 187
Eric R. Kandel, Steven A. Siegelbaum

The Neuromuscular Junction Is a Well-Studied Example of Directly Gated Synaptic Transmission 187
The Motor Neuron Excites the Muscle by Opening Ion Channels at the End-Plate 190
The Synaptic Potential at the End-Plate Is Produced by Ionic Current Flowing Through Acetylcholine-Gated Channels 190
The Ion Channel at the End-Plate Is Permeable to Both Sodium and Potassium 191

The Current Flow Through Single Ion Channels Can Be Measured by the Patch Clamp 192
Individual Acetylcholine-Gated Channels Conduct a Unitary Current 193
Four Factors Determine the End-Plate Current 194

The Molecular Properties of the Acetylcholine-Gated Channel at the Nerve-Muscle Synapse Are Known 196
Ligand-Gated Channels for Acetylcholine Differ From Voltage-Gated Channels 196

A Single Macromolecule Forms the Nicotinic Acetylcholine Receptor and Channel 197

An Overall View 201
Postscript: The End-Plate Current Can Be Calculated From an Equivalent Circuit 202
Selected Readings 205
References 205

12 Synaptic Integration 207
Eric R. Kandel, Steven A. Siegelbaum

A Central Neuron Receives Both Excitatory and Inhibitory Signals 209
Excitatory and Inhibitory Synapses Have Distinctive Ultrastructures 209
Excitatory Synaptic Action Is Mediated by Glutamate-Gated Channels That Conduct Sodium and Potassium 212
Inhibitory Synaptic Action Is Usually Mediated by GABA- and Glycine-Gated Channels That Conduct Chloride 214

Currents Through Single GABA- and Glycine-Gated Channels Can Be Recorded 217
How Does the Opening of Chloride Channels Inhibit the Postsynaptic Cell? 217

Synaptic Receptors for Glutamate, GABA, and Glycine Are Transmembrane Proteins 219
GABA and Glycine Receptors 219
Glutamate Receptors 219
Other Receptor-Channels in the Central Nervous System 221

Excitatory and Inhibitory Signals Are Integrated Into a Single Response by the Cell 222

Synapses On a Single Central Neuron Are Grouped According to Function 223
Synapses on Cell Bodies Are Often Inhibitory 224
Synapses on Dendritic Spines Are Often Excitatory 224
Synapses on Axon Terminals Are Often Modulatory 226

An Overall View 226
Selected Readings 227
References 228
Contents

13 Modulation of Synaptic Transmission: Second Messengers 229
Steven A. Siegelbaum, James H. Schwartz, Eric R. Kandel

Second-Messenger Pathways Activated by Metabotropic Receptors Share a Common Molecular Logic 230

The Cyclic AMP Pathway Involves a Polar and Diffusible Cytoplasmic Messenger 231

IP₃, Diacylglycerol, and Arachidonic Acid Are Generated Through Hydrolysis of Phospholipids 236

Arachidonic Acid Is Metabolized to Produce Other Second Messengers 236

The Tyrosine Kinase Pathway Utilizes Both Receptor and Cytoplasmic Kinases 238

The Gaseous Second Messengers, Nitric Oxide and Carbon Monoxide, Stimulate cGMP Synthesis 239

The Physiological Actions of Ionotropic and Metabotropic Receptors Differ: Second Messengers Can Close As Well As Open Ion Channels 240

Cyclic AMP-Dependent Protein Kinase Can Close Potassium Channels 243

Arachidonic Acid Metabolites Open the Same Channels Closed by cAMP 243

G Proteins Can Modulate Ion Channels Directly 244

Second-Messenger Pathways Interact With One Another 248

Phosphoprotein Phosphatases Regulate the Levels of Phosphorylation 249

Second Messengers Can Endow Synaptic Transmission With Long-Lasting Consequences 249

An Overall View 250

Selected Readings 251

References 278

15 Neurotransmitters 280
James H. Schwartz

Chemical Messengers Must Fulfill Four Criteria To Be Considered Transmitters 280

Only a Few Small-Molecule Substances Act as Transmitters 282

Acetylcholine 282

Biogenic Amine Transmitters 282

Amino Acid Transmitters 284

ATP and Adenosine 285

Small-Molecule Transmitters Are Actively Taken Up Into Vesicles 285

Many Neuroactive Peptides Serve as Transmitters 286

Peptides and Small-Molecule Transmitters Differ in Several Ways 290

Peptides and Small-Molecule Transmitters Can Coexist and Be Coreleased 290

Removal of Transmitter From the Synaptic Cleft Terminates Synaptic Transmission 294

An Overall View 295

Selected Readings 296

References 296

16 Diseases of Chemical Transmission at the Nerve-Muscle Synapse: Myasthenia Gravis 298
Lewis P. Rowland

Myasthenia Gravis Affects Transmission at the Nerve-Muscle Synapse 299
Physiological Studies Showed a Disorder of Neuromuscular Transmission 299
Immunological Studies Indicated That Myasthenia Is an Autoimmune Disease 300
Identification of Antibodies to the Acetylcholine Receptor Initiated the Modern Period of Research 300
Immunological Changes Cause the Physiological Abnormality 302
Antibody Binds to the α-Subunit of the Acetylcholine Receptor in Myasthenia Gravis 303
The Molecular Basis of the Autoimmune Reaction Has Been Defined 304
Current Therapy for Autoimmune Myasthenia Gravis Is Effective but Not Ideal 306
Congenital Forms of Myasthenia Gravis 306
Other Disorders of Neuromuscular Transmission: Lambert-Eaton Syndrome and Botulism 307
An Overall View 308
Selected Readings 308
References 308

Part IV
The Neural Basis of Cognition

17 The Anatomical Organization of the Central Nervous System317
David G. Amaral
The Central Nervous System Has Seven Major Divisions 319
Spinal Cord 319
Medulla 320
Pons 322
Midbrain 322
Cerebellum 322
Diencephalon 322
Cerebral Hemispheres 322
Five Principles Govern the Organization of the Major Functional Systems 323
Each Functional System Involves Several Brain Regions That Carry Out Different Types of Information Processing 323
Identifiable Pathways Link the Components of a Functional System 323
Each Part of the Brain Projects in an Orderly Fashion Onto the Next, Thereby Creating Topographical Maps 323
Functional Systems Are Hierarchically Organized 324
Functional Systems on One Side of the Brain Control the Other Side of the Body 324
The Cerebral Cortex Is Concerned With Cognitive Functioning 324
The Cerebral Cortex Is Anatomically Divided Into Four Lobes 325
The Cerebral Cortex Has Functionally Distinct Regions 325
The Cerebral Cortex Is Organized in Layers 327
The Layers Organize Inputs and Outputs 327
The Cerebral Cortex Has Two Major Neuronal Cell Types: Projection Neurons and Interneurons 329
Subcortical Regions of the Brain Contain Functional Groups of Neurons Called Nuclei 331
Modulatory Systems in the Brain Influence Motivation, Emotion, and Memory 333
The Peripheral Nervous System Is Anatomically But Not Functionally Distinct From the Central Nervous System 334
An Overall View 335
Selected Readings 336
References 336

18 The Functional Organization of Perception and Movement337
David G. Amaral
Sensory Information Processing Is Illustrated in the Somatosensory System 338
Somatosensory Information From the Trunk and Limbs Is Conveyed to the Spinal Cord 338
The Primary Sensory Neurons of the Trunk and Limbs Are Clustered in the Dorsal Root Ganglia 340
The Central Axons of Dorsal Root Ganglion Neurons Are Arranged to Produce a Map of the Body Surface 340
Each Somatic Submodality is Processed in a Distinct Subsystem From the Periphery to the Brain 341
The Thalamus Is an Essential Link Between Sensory Receptors and the Cerebral Cortex for All Modalities Except Olfaction 341
Sensory Information Processing Culminates in the Cerebral Cortex 344
Voluntary Movement Is Mediated by Direct Connections Between the Cortex and Spinal Cord 347
An Overall View 348
Selected Readings 348
References 348

19 Integration of Sensory and Motor Function: The Association Areas of the Cerebral Cortex and the Cognitive Capabilities of the Brain 349
Clifford B. Saper, Susan Iversen, Richard Frackowiak
Three Multimodal Association Areas Are Concerned With Integrating Different Sensory Modalities and Linking Them to Action 350
Three Principles Govern the Function of the Association Areas 353
Sensory Information is Processed Both Sequentially and in Parallel 353
Sensory Information From Unimodal Areas of Cortex Converges in Multimodal Areas 354
The Sequence of Information Processing Is Reversed in the Motor System 355
The Prefrontal Association Areas Illustrate the Function of Association Cortex 356
Lesions of the Prefrontal Association Area in Monkeys Interfere With Motor Planning 356
The Cortex Surrounding the Principal Sulcus Is Concerned With Tasks That Require Working Memory 357
Lesions of the Prefrontal Association Area Disturb Behavioral Planning in Humans 358
Interaction Among Association Areas Leads to Comprehension, Cognition, and Consciousness 362
Consciousness and the Sensory Processing Streams Are Not Distributed Symmetrically in the Two Cerebral Hemispheres 363
An Overall View 365
Postscript: Functional Imaging Offers a Unique Window on Cognitive Function 366
Functional MRI Is an Adaptation of MRI That Records Changes Related to Tissue Function in Successive Images 374
Use of Radioactive Tracers Yields Images of Biochemical Processes in the Living Brain 375
Selected Readings 379
References 380

20 From Nerve Cells to Cognition: The Internal Cellular Representation Required for Perception and Action 381
Eric R. Kandel
The Major Goal of Cognitive Neural Science Is to Study the Neural Representations of Mental Acts 382
Cognitive Neural Science Integrates Five Major Approaches to the Study of Cognitive Function 383
The Brain Has an Orderly Representation of Personal Space That Can Be Studied on the Cellular Level 384
The Cortex Has a Map of the Body for Each Submodality of Sensation 387
The Orderliness of the Cortical Maps of the Body Is the Basis of the Accuracy of Clinical Neurological Examinations 388
The Internal Representation of Personal Space Is Modifiable by Experience 388
The Cortical Representation of the Human Hand Area Can Be Modified 389
The Phantom Limb Syndrome May Result From Rearrangements of Cortical Inputs 390
Real as Well as Imagined and Remembered Extrapersonal Space Is Represented in the Posterior Parietal Association Cortex 392
Is Consciousness Accessible to Neurobiological Analysis? 396
Consciousness Poses Fundamental Problems for a Biological Theory of the Mind 396
Despite Philosophical Cautions, Neurobiologists Have Adopted a Reductionist Approach to Consciousness 398
Selective Attention Is a Testable Component of Consciousness 400
An Overall View 402
Selected Readings 402
References 402

Part V
Perception

21 Coding of Sensory Information 411
Esther P. Gardner, John H. Martin
Sensory Systems Mediate Four Attributes of a Stimulus That Can Be Correlated Quantitatively With a Sensation 412
Sensory Modality Is Determined by the Stimulus Energy 414

Modality is Encoded by a Labeled Line Code 414
Receptors Transduce Specific Types of Energy Into an Electrical Signal 416
Each Receptor Responds to a Narrow Range of Stimulus Energy 416

The Spatial Distribution of Sensory Neurons Activated by a Stimulus Conveys Information About the Stimulus Location 418

The Receptive Fields of Sensory Neurons in the Somatosensory and Visual Systems Define the Spatial Resolution of a Stimulus 418
The Sensory Neurons for Hearing, Taste, and Smell Are Spatially Organized According to Sensitivity 419

Intensity of Sensation Is Determined by the Stimulus Amplitude 419
Psychophysical Laws Govern the Perception of Stimulus Intensity 421
Stimulus Intensity Is Encoded by the Frequency of Action Potentials in Sensory Nerves 421

The Duration of a Sensation is Determined in Part by the Adaptation Rates of Receptors 423

Sensory Systems Have a Common Plan 425
Sensory Information Is Conveyed by Populations of Sensory Neurons Acting Together 426
Sensory Systems Process Information in a Series of Relay Nuclei 426
Inhibitory Interneurons Within Each Relay Nucleus Help Sharpen Contrast Between Stimuli 427

An Overall View 428
Selected Readings 428
References 428

22 The Bodily Senses 430
Esther P. Gardner, John H. Martin, Thomas M. Jessell

The Dorsal Root Ganglion Neuron Is the Sensory Receptor in the Somatic Sensory System 431
Touch Is Mediated by Mechanoreceptors in the Skin 432
Mechanoreceptors Differ in Morphology and Skin Location 432
Mechanoreceptors in the Superfield and Deep Layers of Skin Have Different Receptive Fields 435
The Spatial Resolution of Stimuli on the Skin Varies Throughout the Body Because the Density of Mechanoreceptors Varies 436

Mechanoreceptors Differ in Adaptation Properties and Sensory Thresholds 438
The Spatial Characteristics of Objects Are Signaled by Populations of Mechanoreceptors 438

Other Somatic Sensations Are Mediated by a Variety of Specialized Receptors 441
Warmth and Cold Are Mediated by Thermoreceptors 441
Pain Is Mediated by Nociceptors 442
Proprioception Is Mediated by Mechanoreceptors in Skeletal Muscle and Joint Capsules 443
The Viscera Have Mechanosensory and Chemosensory Receptors 443

The Afferent Fibers of Different Receptors Conduct Action Potentials at Different Rates 444

Afferent Fibers Conveying Different Somatic Sensory Modalities Have Distinct Terminal Patterns in the Spinal Cord and Medulla 446
The Dorsal Column-Medial Lemniscal System Is the Principal Pathway for Perception of Touch and Proprioception 446
The Anterolateral System Mediates Sensations of Pain and Temperature 448

An Overall View 449
Selected Readings 449
References 450

23 Touch 451
Esther P. Gardner, Eric R. Kandel

Tactile Information About an Object Is Fragmented by Peripheral Sensors and Must Be Integrated by the Brain 452

The Primary Somatic Sensory Cortex Integrates Information About Touch 452

Cortical Neurons Are Defined by Their Receptive Fields as Well as by Modality 454
The Properties of Cortical Receptive Fields Are Due to Convergent and Divergent Connections in the Relay Nuclei 456
Inputs to the Somatic Sensory Cortex Are Organized in Columns by Receptive Field and Modality 456

The Body Surface Is Represented in the Brain by the Somatotopic Arrangement of Sensory Inputs 458

Spatial Resolution in the Cortex Is Correlated With the Innervation Density of the Skin 459
Cortical Receptive Fields Are Altered by Use of the Hand 462
Inhibitory Networks Sharpen Spatial Resolution by Restricting the Spread of Excitation 462
 Lateral Inhibition Can Aid in Two-Point Discrimination 462
 Spatial Detail Is Accurately Represented in the Cortex 462
Neurons in Higher Cortical Areas Have Complex Feature-Detecting Properties 463
 Stimulus Features Are Processed in Parallel by Distinct Areas of Cortex 465
 The Behavioral Relevance of a Tactile Stimulus Modifies Cortical Responses 468
Lesions in Somatosensory Areas of the Brain Produce Specific Sensory Deficits 468
An Overall View 469
Selected Readings 470
References 470

24 The Perception of Pain 472
Allan I. Basbaum, Thomas M. Jessell
Noxious Insults Activate Nociceptors 473
 Nociceptive Afferent Fibers Terminate on Neurons in the Dorsal Horn of the Spinal Cord 475
 Nociceptive Afferent Fibers Use Glutamate and Neuropeptides as Neurotransmitters 477
Hyperalgesia Has Both Peripheral and Central Origins 477
 Changes in Nociceptor Sensitivity Underlie Primary Hyperalgesia 477
 The Hyperexcitability of Dorsal Horn Neurons Underlies Centrally Mediated Hyperalgesia 479
Nociceptive Information Is Transmitted From the Spinal Cord to the Thalamus and Cerebral Cortex Along Five Ascending Pathways 480
 Thalamic Nuclei Relay Afferent Information to the Cerebral Cortex 480
 The Cerebral Cortex Contributes to the Processing of Pain 481
Pain Can Be Controlled by Central Mechanisms 482
 The Balance of Activity in Nociceptive and Nonnociceptive Primary Afferent Fibers Can Modulate Pain: The Gate Control Theory 482
 Direct Electrical Stimulation of the Brain Produces Analgesia 483
 Opiated-Induced Analgesia Involves the Same Pathways as Stimulation-Produced Analgesia 483

25 Constructing the Visual Image 492
Eric R. Kandel, Robert H. Wurtz
Visual Perception Is a Creative Process 492
Visual Information is Processed in Multiple Cortical Areas 496
 Different Cortical Areas Make Different Contributions to the Processing of Motion, Depth, Form, and Color 497
Parallel Pathways Convey Information From the Retina to Parietal and Temporal Cortical Areas 500
 Visual Attention May Facilitate Coordination Between Separate Visual Pathways 501
The Analysis of Visual Attention May Provide Important Clues About Conscious Awareness 504
An Overall View 505
Selected Readings 505
References 506

26 Visual Processing by the Retina 507
Marc Tessier-Lavigne
The Retina Contains the Eye's Receptor Sheet 508
 There Are Two Types of Photoreceptors: Rods and Cones 508
 Rods Detect Dim Lights 509
 Cones Mediate Color Vision 509
 Light Is Absorbed by Visual Pigments in the Photoreceptors 510
Phototransduction Results From a Three-Stage Cascade of Biochemical Events in the Photoreceptors 510
 Stage 1: Light Activates Pigment Molecules in the Photoreceptors 511
Stage 2: Activation of Pigment Molecules Reduces the Cytoplasmic Concentration of Cyclic GMP 512
Stage 3: The Reduction in Cyclic GMP Concentration Closes cGMP-Gated Ion Channels, Thus Hyperpolarizing the Photoreceptor 514

Photoreceptors Slowly Adapt to Changes in Light Intensity 515

The Output of the Retina is Conveyed by the Ganglion Cells 517

The Receptive Field of the Ganglion Cell Has a Center and an Antagonistic Surround 517
Ganglion Cells Are Specialized for the Detection of Contrasts and Rapid Changes in the Visual Image 519
Specialized Ganglion Cells Process Different Aspects of the Visual Image 520

Signals From Photoreceptors Are Relayed to Ganglion Cells Through a Network of Interneurons 520
Bipolar Cells Convey Cone Signals to Ganglion Cells Through Direct or Indirect Pathways 520
The Receptive Fields of Bipolar Cells Have a Center-Surround Organization 521
Different Classes of Bipolar Cells Have Excitatory Connections With Corresponding Classes of Ganglion Cells 521

An Overall View 521

Selected Readings 522

References 522

27 Central Visual Pathways523
Robert H. Wurtz, Eric R. Kandel

The Retinal Image Is an Inversion of the Visual Field 524

The Retina Projects to Subcortical Regions in the Brain 526
The Superior Colliculus Controls Saccadic Eye Movements 526
The Pretectum of the Midbrain Controls Pupillary Reflexes 527
The Lateral Geniculate Nucleus is the Main Terminus for Input to the Visual Cortex 528

Magnocellular and Parvocellular Pathways Convey Different Information to the Visual Cortex 529

The Primary Visual Cortex Organizes Simple Retinal Inputs Into the Building Blocks of Visual Images 532

Simple and Complex Cells Decompose the Outlines of a Visual Image Into Short Line Segments of Various Orientations 533

Some Feature Abstraction Is Accomplished by Progressive Convergence 535

The Primary Visual Cortex Is Organized Into Functional Modules 537

Neurons With Similar Receptive Fields Are Organized in Columns 537
A Hypercolumn Represents the Visual Properties of One Region of the Visual Field 539
Columnar Units Are Linked by Horizontal Connections 540

Lesions in the Retino-Geniculate-Cortical Pathway Are Associated With Specific Gaps in the Visual Field 543

An Overall View 545

Selected Readings 545

References 546

28 Perception of Motion, Depth, and Form548
Robert H. Wurtz, Eric. R. Kandel

The Parvocellular and Magnocellular Pathways Feed Into Two Processing Pathways in Extrastriate Cortex 549

Motion Is Analyzed Primarily in the Dorsal Pathway to the Parietal Cortex 552

Motion Is Represented in the Middle Temporal Area 553
Cells in MT Solve the Aperture Problem 553
Control of Movement Is Selectively Impaired by Lesions of MT 556
Perception of Motion Is Altered by Lesions and Microstimulation of MT 556

Depth Vision Depends on Monocular Cues and Binocular Disparity 558

Monocular Cues Create Far-Field Depth Perception 558
Stereoscopic Cues Create Near-Field Depth Perception 560
Information From the Two Eyes Is First Combined in the Primary Visual Cortex 560
Random Dot Stereograms Separate Stereopsis From Object Vision 561

Object Vision Depends on the Ventral Pathway to the Inferior Temporal Lobe 562

Cells in V2 Respond to Both Illusory and Actual Contours 562
Cells in V4 Respond to Form 563
Recognition of Faces and Other Complex Forms Depends Upon the Inferior Temporal Cortex 564
Visual Attention Facilitates Coordination Between Separate Visual Pathways 565
The Binding Problem in the Visual System 566
An Overall View 568
Selected Readings 569
References 569

29 Color Vision 572
Peter Lennie
Color Vision Captures Properties of Surfaces 573
Color Vision Requires at Least Two Types of Photoreceptors With Different Spectral Sensitivities 573
Three-Cone Systems of the Human Retina Respond to Different Parts of the Visible Spectrum 575
Signals From Cones Are Transformed Early in the Visual Pathway 577
Signals Are Transformed Again in the Primary Visual Cortex 581
The Cortex Contains More Than Three Chromatic Channels 581
Neurons in Primary Visual Cortex Do Not Fall Into Distinct Color Classes 582
Signals About Color Are Conveyed to the Temporal Lobe 583
Color Blindness Can Be Congenital or Acquired 583
Congenital Abnormalities Take Several Forms 584
Acquired Defects Arise Through Disease or Injury 585
An Overall View 588
Selected Readings 588
References 589

30 Hearing 590
A. J. Hudspeth
The Ear Has Three Functional Parts 591
External Ear 591
Middle Ear 591
Inner Ear 592
Hearing Commences With the Capture of Sound Energy by the Ear 593
Functional Anatomy of the Cochlea 593
The Basilar Membrane Is a Mechanical Analyzer of Sound Frequency 593
The Organ of Corti Is the Site of Mechanoelectrical Transduction in the Cochlea 597
Sound Energy is Mechanically Amplified in the Cochlea 599

Neural Processing of Auditory Information 601
Ganglion Cells Innervate Cochlear Hair Cells 601
Cochlear Nerve Fibers Encode Stimulus Frequency and Intensity 601
Sound Processing Begins in the Cochlear Nuclei 603
Relay Nuclei in the Brain Stem Mediate Localization of Sound Sources 606
Auditory Information Is Processed in Multiple Areas of the Cerebral Cortex 608
Sensorineural Hearing Loss Is Common But Can Often Be Overcome 610
An Overall View 612
Selected Readings 613
References 613

31 Sensory Transduction in the Ear 614
A. J. Hudspeth
Hair Cells Transform Mechanical Energy Into Neural Signals 616
Deflection of the Hair Bundle Initiates Mechanoelectrical Transduction 616
Mechanical Force Directly Opens and Closes Transduction Channels 617
Direct Mechanoelectrical Transduction Is Rapid 619
The Temporal Responsiveness of Hair Cells Determines Their Sensitivity to Stimuli 619
Hair Cells Adapt to Sustained Stimuli 619
Hair Cells Are Tuned to Specific Stimulus Frequencies 620
Synaptic Transmission From Hair Cells is Triggered at Low-Amplitude Receptor Potentials 622
An Overall View 623
Selected Readings 624
References 624

32 Smell and Taste: The Chemical Senses 625
Linda B. Buck
Odors Are Detected by Nasal Olfactory Sensory Neurons 626
Different Odorants Stimulate Different Olfactory Sensory Neurons 627
Contractile Force Depends on the Level of Activation of Each Muscle Fiber and Its Length and Velocity 680

Formation of Cross Bridges Depends on Calcium 680
The Number of Cross Bridges Depends on the Degree of Overlap Between Actin and Myosin Filaments 681
The Force Produced by Cross Bridges Depends on the Velocity of the Sarcomere 683
Repeated Activation of Muscle Causes Fatigue 683

Three Types of Motor Units Differ in Speed, Strength of Contraction, and Fatigability 683

Motor Units Are Recruited in Fixed Order 686
The Electrical Properties of Motor Neurons Determine Their Responses to Synaptic Input 686
The Force of Contraction Depends on the Number of Recruited Motor Neurons and Their Individual Firing Rates 687

Movements Are Produced by the Coordinated Work of Many Muscles Acting on Skeletal Joints 687
Muscles Have Different Actions at Individual Joints 687
Rapid Changes in Joint Torque Require Sequential Activation of Agonist and Antagonist Muscles 688
Muscle Force Is Required to Overcome Inertia 688
Muscle Force May Be Used to Create Stiffness at Joints 689
Muscles Act on More than One Joint 690

Diseases of the Motor Unit 695
Lewis P. Rowland

Neurogenic and Myopathic Diseases Are Distinguished by Clinical and Laboratory Criteria 696
Clinical Criteria Help to Identify Neurogenic and Myopathic Conditions 696
Laboratory Criteria Also Assist in Making the Diagnosis 697

Diseases of Motor Neurons Are Acute or Chronic 700
Motor Neuron Diseases Do Not Affect Sensory Neurons 700
Motor Neuron Disease Is Characterized by Fasciculation and Fibrillation 701

Diseases of Peripheral Nerves Are Also Acute or Chronic 701
Neuropathies Can Cause Positive or Negative Signs and Symptoms 703

Demyelination Leads to Slowing of Conduction Velocity 703

Diseases of Skeletal Muscle Can Be Inherited or Acquired 704
Muscular Dystrophies Are the Most Common Inherited Myopathies 704
Dermatomyositis Exemplifies Acquired Myopathy 704
Weakness in Myopathies Need Not Be Due to Loss of Muscle Fibers 705

Molecular Genetics Has Illuminated the Physiology and Pathology of Neurogenic and Myopathic Diseases 705
The Membrane Protein Dystrophin is Lacking in Duchenne Muscular Dystrophy 707
Dystrophin-Normal Muscular Dystrophy and Limb-Girdle Muscular Dystrophy are Associated With Mutations of Genes for Sarcoglycans 707
Myelin Proteins Are Affected in Some Hereditary Peripheral Neuropathies 709

36 Spinal Reflexes 713
Keir Pearson, James Gordon

Reflexes Are Highly Adaptable and Control Movements in a Purposeful Manner 714
Spinal Reflexes Produce Coordinated Patterns of Muscle Contraction 715
Cutaneous Reflexes Produce Complex Movements That Serve Protective and Postural Functions 715
The Stretch Reflex Acts to Resist the Lengthening of a Muscle 717

Neuronal Networks in the Spinal Cord Contribute to the Purposeful Integration of Reflex Responses 717
The Stretch Reflex Involves a Monosynaptic Pathway 717
Inhibitory Interneurons Coordinate Muscles Surrounding a Joint 717
Divergence in Reflex Pathways Amplifies Sensory Inputs and Coordinates Muscle Contractions 721
Convergence of Inputs on Interneurons Increases the Flexibility of Reflex Responses 721
Centrally Generated Motor Commands Can Alter Transmission in Spinal Reflex Pathways 724
Tonic and Dynamic Mechanisms Regulate the Strength of Spinal Reflexes 724
Gamma Motor Neurons Provide a Mechanism for Adjusting the Sensitivity of Muscle Spindles 724

Proprioceptive Reflexes Play an Important Role in the Regulation of Both Voluntary and Automatic Movements 726

Damage to the Central Nervous System Produces Characteristic Alterations in Reflex Responses and Muscle Tone 730

An Overall View 735

Selected Readings 735

References 735

37 Locomotion737

Keir Pearson, James Gordon

A Complex Sequence of Muscle Contractions Is Required for Stepping 740

The Motor Pattern for Stepping Mammals Is Produced at the Spinal Level 740

Neuronal Networks Within the Spinal Cord Generate Rhythmic Alternating Activity in Flexor and Extensor Muscles 742

The Rhythm-Generating System in the Spinal Cord Can Generate Complex Motor Patterns 743

Sensory Input From Moving Limbs Regulates Stepping Patterns 747

Proprioception Regulates the Timing and Amplitude of the Stepping Patterns 747

Sensory Input From the Skin Allows Stepping to Adjust to Unexpected Obstacles 749

Descending Pathways Are Necessary for Initiation and Adaptive Control of Walking 750

Descending Pathways From the Brain Stem Initiate Walking and Control Its Speed 750

The Descending Signals That Initiate Locomotion Are Transmitted via the Reticulospinal Pathway 751

The Motor Cortex Is Involved in the Control of Precise Stepping Movements in Visually Guided Walking 752

The Cerebellum Fine-Tunes the Locomotor Pattern by Regulating the Timing and Intensity of Descending Signals 753

Human Walking May Involve Spinal Pattern Generators 753

An Overall View 754

Selected Readings 754

References 754

38 Voluntary Movement756

John Krakauer, Claude Ghez

Voluntary Movement Is Organized in the Cortex 758

The Primary Motor Cortex Controls Simple Features of Movement 758

Premotor Cortical Areas Project to the Primary Motor Cortex and Spinal Cord 760

Each Cortical Motor Area Receives Unique Cortical and Subcortical Inputs 760

The Somatotopic Organization of the Motor Cortex Is Plastic 761

Corticospinal Axons Influence Spinal Motor Neurons Through Direct and Indirect Connections 763

The Primary Motor Cortex Executes Movements and Adapts Them to New Conditions 764

Activity in Individual Neurons of the Primary Motor Cortex Is Related to Muscle Force 764

Direction of Movement Is Encoded by Populations of Cortical Neurons 765

Neurons in the Primary Motor Cortex Are Activated Directly by Peripheral Simulation Under Particular Conditions 767

Individual Movement of Digits Is Controlled by Patterns of Activity in a Population of Cortical Neurons 767

Each Premotor Area Contributes to Different Aspects of Motor Planning 770

The Supplementary and Presupplementary Motor Areas Play an Important Role in Learning Sequences of Discrete Movements 771

The Lateral Premotor Areas Contribute to the Selection of Action and to Sensorimotor Transformations 774

Reaching and Grasping Are Mediated by Separate Parieto-Premotor Channels 777

An Overall View 778

Selected Readings 779

References 779
39 The Control of Gaze 782
Michael E. Goldberg

Six Neuronal Control Systems Keep the Fovea on Target 783
An Active Fixation System Keeps the Eyes on the Stationary Target 784
The Saccadic System Points the Fovea Toward Objects of Interest 784
The Smooth Pursuit System Keeps Moving Targets on the Fovea 784
The Vergence Movement System Aligns the Eyes to Look at Targets at Different Depths 785

The Eye Is Moved by Six Muscles 785
Eye Movements Rotate the Eye in the Orbit 785
The Six Extraocular Muscles Form Three Complementary Pairs 786
Extraocular Muscles Are Controlled by Three Cranial Nerves 787
Extraocular Motor Neurons Signal Eye Position and Velocity 788

The Motor Circuits for Saccades Lie in the Brain Stem 789
Horizontal Saccades Are Generated in the Pontine Reticular Formation 789
Vertical Saccades Are Generated in the Mesencephalic Reticular Formation 792
Patients With Brain Stem Lesions Have Characteristic Deficits in Eye Movements 792

Saccades Are Controlled by the Cerebral Cortex 792
The Superior Colliculus Integrates Visual and Motor Information Into Oculomotor Signals to the Brain Stem 792
The Rostral Superior Colliculus Facilitates Visual Fixation 793
The Basal Ganglia Inhibit the Superior Colliculus 793
The Parietal Cortex Controls Visual Attention 794
The Frontal Eye Field Sends a Specific Movement Signal to the Superior Colliculus 794
The Control of Saccades Can Be Modified By Experience 795

Smooth Pursuit, Vergence, and Gaze Are Controlled by Distinct Systems 795
Smooth Pursuit Involves the Cerebral Cortex, the Cerebellum, and the Pons 795
Vergence Is Organized in the Midbrain 796
Gaze Involves Combined Head and Eye Movements 796

An Overall View 797
Selected Readings 798
References 798

40 The Vestibular System 801
Michael E. Goldberg, A.J. Hudspeth

The Vestibular Labyrinth Houses Five Receptor Organs 802
Hair Cells Transduce Mechanical Stimuli into Receptor Potentials 802
The Vestibular Nerve Transmits Sensory Information From the Vestibular Organs 803
The Utricle and the Saccule Detect Linear Accelerations 804
The Semicircular Canals Detect Angular Accelerations 805
Most Movements Elicit Complex Patterns of Vestibular Stimulation 806
Menière Disease Affects the Vestibular Labyrinth 807

Vestibular Reflexes Stabilize the Eyes and the Body When the Head Moves 808
The Vestibulo-Ocular Reflexes Compensate for Head Movement 808
Vestibular Nystagmus Resets Eye Position During Sustained Rotation of the Head 809
The Otolith Reflexes Compensate for Linear Motion and Head Deviation Relative to Gravity 809
The Optokinetic System Supplements the Vestibulo-Ocular Reflexes 809
Vestibulospinal Reflexes Are Important in Maintaining Vertical Posture 810

Central Connections of the Vestibular Apparatus Integrate Vestibular, Visual, and Motor Signals 810
The Vestibular Nerve Signals Head Velocity to the Vestibular Nuclei 810
Subcortical and Cortical Structures Contribute to the Optokinetic Reflex 812
The Vestibular Projection to the Cerebral Cortex Allows Perception of Rotation and Vertical Orientation 813

An Overall View 813
Selected Readings 814
References 814
41 Posture 816
Geoffrey Melvill Jones
Posture and Equilibrium 817
Posture and Movement 817
- Postural Readjustment Must be Preceded by Anticipatory Motor Action 817
- Postural Control Can Be Adapted to Suit Specific Behaviors 819
- Adaptive Postural Control Requires an Intact Cerebellum 820
- Adaptive Postural Control Is Learned During Locomotion 821
Vestibular and Neck Contributions 821
- Vestibular and Neck Reflexes Are Subject to Volitional Control 822
- Vestibulospinal and Cervicospinal Reflexes Collaborate in Maintaining Postural Stability 823
Motor Learning in Vestibulo-Ocular Control 824
- The Cerebellum Plays a Key Role in Adapting Vestibulo-Ocular Control 825
- The Memory of Adaptive Learning in the Vestibulo-Ocular Reflex Probably Occurs in the Brain Stem Under Cerebellar Control 828
Vision 828
Perceptual Correlates 829
An Overall View 830
Selected Readings 830
References 830

42 The Cerebellum 832
Claude Ghez, W. Thomas Thach
The Cerebellum Has Three Functionally Distinct Regions 833
Cerebellar Circuits Consist of a Main Excitatory Loop and an Inhibitory Side-Loop 835
- Neurons in the Cerebellar Cortex Are Organized into Three Layers 835
- The Purkinje Cells Receive Excitatory Input from Two Afferent Fiber Systems and Are Inhibited by Three Local Interneurons 835
- Mossy and Climbing Fibers Encode Peripheral and Descending Information Differently 839
- Climbing Fiber Activity Produces Long-Lasting Effects on the Synaptic Efficacy of Parallel Fibers 840
The Vestibulocerebellum Regulates Balance and Eye Movements 841
The Spinoocerebellum Regulates Body and Limb Movements 841
- Somatosensory Information Reaches the Spinoocerebellum Through Direct And Indirect Mossy Fiber Pathways 841
- The Spinoocerebellum Contains Sensory Maps 842
- The Spinoocerebellum Modulates the Descending Motor Systems in the Brain Stem and Cerebral Cortex 843
- The Spinoocerebellum Uses Feed-Forward Mechanisms to Regulate Movements 843
The Cerebrocerebellum Is Involved in Planning Movement and Evaluating Sensory Information for Action 845
- The Cerebrocerebellum Is Part of a High-Level Internal Feedback Circuit That Regulates Cortical Motor Programs 845
- Lesions of the Cerebrocerebellum Disrupt Motor Planning and Prolong Reaction Time 846
- The Cerebrocerebellum Also Has Purely Cognitive Functions 846
The Cerebellum Participates in Motor Learning 847
Cerebellar Diseases Have Distinctive Symptoms and Signs 849
An Overall View 850
Selected Readings 850
References 851

43 The Basal Ganglia 853
Mahlon R. DeLong
The Basal Ganglia Consist of Four Nuclei 854
- The Striatum, the Input Nucleus to the Basal Ganglia, Is Heterogeneous in Both Its Anatomy and Function 856
- The Striatum Projects to the Output Nuclei via Direct and Indirect Pathways 856
The Basal Ganglia Are the Principal Subcortical Components of a Family of Parallel Circuits Linking the Thalamus and Cerebral Cortex 857
- The Skeletomotor Circuit Engages Specific Portions of the Cerebral Cortex, Basal Ganglia, and Thalamus 858
- Single Cell Recording Studies Provide Direct Insight into the Role of the Motor Circuits 859
- Studies of the Oculomotor Circuit Provided Important Insight Into How the Skeletomotor Circuit Operates 861
Some Movement Disorders Result From Imbalances in the Direct and Indirect Pathways in the Basal Ganglia

Overactivity in the Indirect Pathway Is a Major Factor in Parkinsonian Signs

The Level of Dopamine in the Basal-Ganglia Is Decreased in Parkinson Disease

Underactivity in the Indirect Pathway Is a Major Factor in Hyperkinetic Disorders

Huntington Disease Is a Heritable Hyperkinetic Disorder

The Gene for Huntington Disease Has Been Identified

Glutamate-Induced Neuronal Cell Death Contributes to Huntington Disease

The Basal Ganglia Also Have a Role in Cognition, Mood, and Nonmotor Behavior Function

An Overall View

Selected Readings

References

Part VII

Arousal, Emotion, and Behavioral Homeostasis

44 Brain Stem, Reflexive Behavior, and the Cranial Nerves

Clifford B. Saper

The Cranial Nerves Are Functionally Homologous to the Spinal Nerves

The Cranial Nerves Leave the Skull in Groups and Therefore Are Likely to Be Injured Together

The Cranial Nerves Supply the Sensory and Motor Functions of the Face and Head and Autonomic Functions of the Body

The Cranial Nerve Nuclei Follow the Basic Plan for Sensory and Motor Structures in the Spinal Cord

The Sensory Nuclei

The Motor Nuclei

The Brain Stem Deviates From the Organization of the Spinal Cord in Two Important Ways

Neuronal Ensembles in the Brain Stem Reticular Formation Coordinate Reflexes and Simple Behaviors Mediated by the Cranial Nerves

An Overall View

Selected Readings

References

45 Brain Stem Modulation of Sensation, Movement, and Consciousness

Clifford B. Saper

Cell Groups in the Brain Stem With Long Projections Can Be Defined by Their Neurotransmitters

Descending Projections from the Brain Stem to the Spinal Cord Modulate Sensory and Motor Pathways

Pain Is Modulated by Descending Monoaminergic Projections

Posture, Gait, and Muscle Tone Are Modulated by Two Reticulospinal Tracts

Ascending Projections From the Brain Stem Modulate Arousal and Consciousness

Consciousness Represents the Summated Activity of the Cerebral Cortex

The EEG Reflects Two Modes of Firing of Thalamic Neurons

Damage to Either Branch of the Ascending Arousal System May Impair Consciousness

Bilateral Forebrain Damage May Cause Coma or Persistent Vegetative State or Be Symptomatic of Brain Death

An Overall View

Postscript: Examination of the Comatose Patient

States of Consciousness Are Assessed Clinically in Terms of Responsiveness to the Environment

Loss of Consciousness May Be Either Structural or Metabolic in Origin

Testing Four Functional Systems Gives Important Clues to the Cause of Structural Coma

Emergency Care of the Comatose Patient Can Be Lifesaving

Selected Readings

References

46 Seizures and Epilepsy

Gary L. Westbrook

Classification of Seizures and the Epilepsies Is Important for Pathogenesis and Treatment

The Electroencephalogram Represents the Collective Behavior of Cortical Neurons
Partial Seizures Originate Within a Small Group of Neurons Known as a Seizure Focus. Neurons in a Seizure Focus Have Characteristic Activity. Synchronization Results From the Breakdown of Surround Inhibition. The Spread of Seizure Activity Involves Normal Cortical Circuitry.

Generalized Seizures Evolve From Thalamocortical Circuits. Locating the Seizure Focus Is Critical to the Surgical Treatment of Epilepsy.

Prolonged Seizures Can Cause Brain Damage. Repeated Convulsive Seizures (Status Epilepticus) Are a Medical Emergency. Excitotoxicity Underlies Seizure-Related Brain Damage.

The Factors Leading to Development of the Epileptic Condition Are an Unsolved Mystery.

An Overall View

Selected Readings

References

48 Disorders of Sleep and Wakefulness

A Variety of Medical Disorders Are Associated With Excessive Sleepiness. Persistent Daytime Sleepiness Is the Most Prominent Symptom of Narcolepsy. Breathing Is Compromised in Obstructive Sleep Apnea Syndrome. Chronic Insufficient Sleep Syndrome Reflects a Failure to Obtain Sufficient Sleep.

Insomnia Can Be Transient or Persistent. Insomnia Is the Most Frequent of All Complaints About Sleep and Wakefulness. Disturbed Circadian Rhythm Causes Insomnia. Periodic Limb Movement Disorder Is a Primary Sleep Pathology.

An Overall View

Selected Readings

References

49 The Autonomic Nervous System and the Hypothalamus

The Enteric Nervous System Is Largely Autonomous 964

Sensory Inputs Produce a Wide Range of Visceral Reflexes 965

Discrete Autonomic Reflexes Produce Both Slow and Rapid Visceral Responses 966

Autonomic Neurons Use a Variety of Chemical Transmitters 969

Ganglionic Transmission Involves Both Fast and Slow Synaptic Potentials 970

Norepinephrine and Acetylcholine Are the Predominant Transmitters in the Autonomic Nervous System 970

ATP and Adenosine Have Potent Extracellular Actions 970

Many Different Neuropeptides Are Present in Autonomic Neurons 970

A Central Autonomic Network Coordinates Autonomic Function 972

The Hypothalamus Integrates Autonomic and Endocrine Functions With Behavior 974

The Hypothalamus Contains Specialized Groups of Neurons Clustered in Nuclei 977

The Hypothalamus Controls the Endocrine System 978

Magnocellular Neurons Secrete Oxytocin and Vasopressin Directly From the Posterior Pituitary Gland 979

Parvocellular Neurons Secrete Peptides That Regulate Release of Anterior Pituitary Hormones 979

An Overall View 980

Selected Readings 980

References 981

50 Emotional States and Feelings 982

In the Arnold Theory Autonomic Responses Are Not an Essential Component of Emotion 985

The Hypothalamus Coordinates the Peripheral Expression of Emotional States 986

The Search for Cortical Representation of Feeling Has Led to the Limbic System 986

The Amygdala Is the Part of the Limbic System Most Specifically Involved With Emotional Experience 988

Learned Emotional Responses Are Processed in the Amygdala 990

The Amygdala May Be Involved in Both Pleasurable and Fearful Responses to Stimuli 992

The Amygdala Mediates Both the Autonomic Expression and the Cognitive Experience of Emotion 992

The Frontal, Cingulate, and Parahippocampal Cortices Are Involved in Emotion 993

The Hippocampus Has Only an Indirect Role in Emotion 994

An Overall View 995

Selected Readings 995

References 996

51 Motivational and Addictive States 998

Drive States Are Simple Cases of Motivational States That Can Be Modeled as Servo-Control Systems 999

Temperature Regulation Involves Integration of Autonomic, Endocrine, and Skeletomotor Responses 1000

Feeding Behavior Is Regulated by a Variety of Mechanisms 1002

In the James-Lange Theory Emotions Are Cognitive Responses to Information From the Periphery 983

The Cannon-Bard Theory Emphasizes the Importance of the Hypothalamus and Other Subcortical Structures in Mediating Both the Cognitive and Peripheral Aspects of Emotion 984

According to the Schachter Theory Feelings Are Cognitive Translations of Ambiguous Peripheral Signals 984

Dual Controlling Elements in the Hypothalamus Contribute to the Control of Food Intake 1002

Food Intake Is Controlled by Short-Term and Long-Term Cues 1004

Specific Genes Are Involved in the Control of Food Intake 1005

Drinking Is Regulated by Tissue Osmolality and Vascular Volume 1006

Motivational States Can Be Regulated by Factors Other Than Tissue Needs 1007

Ecological Constraints 1007

Anticipatory Mechanisms 1007

Hedonic Factors 1007
The Mesolimbic Dopaminergic Pathways Important for Reinforcement Are Also Recruited by Some Drugs of Abuse 1009

The Limbic Dopaminergic Neurons Are Involved in Behavioral Activation 1009

Drugs of Abuse Increase the Level of Dopamine Released in the Brain 1010

An Overall View 1012
Selected Readings 1012
References 1013

52 The Induction and Patterning of the Nervous System 1019

The Entire Nervous System Arises From the Ectoderm 1021

Inductive Signals Control Neural Cell Differentiation 1022

The Neural Plate Is Induced by Signals From Adjacent Mesoderm 1023

Neural Induction Involves Inhibition of Bone Morphogenetic Protein Signals 1024

The Neural Plate Is Patterned Along Its Dorsoventral Axis by Signals From Adjacent Nonneural Cells 1027

The Ventral Neural Tube Is Patterned by Sonic Hedgehog Secreted From the Notochord and Floor Plate 1027

The Dorsal Neural Tube Is Patterned by Bone Morphogenetic Proteins Secreted From the Epidermal Ectoderm and Roof Plate 1029

Inductive Signaling in the Two Halves of the Neural Tube Depends on a Common Principle 1029

Dorsoventral Patterning Is Maintained Throughout the Rostrocaudal Length of the Neural Tube 1029

The Rostrocaudal Axis of the Neural Tube Is Patterned in Several Stages 1030

The Hindbrain Is Organized in Segmental Units by Hox Genes 1030

The Midbrain Is Patterned by Signals From a Neural Organizing Center 1034

The Developing Forebrain Is Subdivided Along Its Rostrocaudal Axis 1035

Regional Differentiation of the Cerebral Cortex Depends on Afferent Input As Well As Intrinsic Programs of Cell Differentiation 1036

An Overall View 1038
Selected Readings 1038
References 1039

53 The Generation and Survival of Nerve Cells 1041

The Molecular Basis of Neurona Generation Is Similar Throughout Phylogeny 1041

Neuronal and Glial Fates Are Controlled by Local Signaling 1047

Secreted Factors Direct the Differentiation of Neural Crest Cells into Neurons and Glia 1048

Glial Cell Differentiation in the Central Nervous System Is Also Controlled by Diffusible Factors 1049

Neuronal Fate in the Mammalian Cortex Is Influenced by the Timing of Cell Differentiation 1049

The Neurotransmitter Phenotype of a Neuron Is Controlled by Signals From the Neuronal Target 1051

The Survival of a Neuron Is Also Regulated by Signals From the Neuronal Target 1052

Target Cells Secrete a Variety of Neurotrophic Factors 1055

Elimination of Neurotrophic Factors and Their Receptors Leads to Neuronal Death 1057

Deprivation of Neurotrophic Factors Activates a Cell Death Program in Neurons 1058

An Overall View 1061
Selected Readings 1061
References 1061

54 The Guidance of Axons to Their Targets 1063

Specific Molecular Cues Guide Axons to Their Targets 1063

Axons Reach Their Destinations in a Series of Discrete Steps 1067

Retinal Axons React to Intermediate Cues en Route to Their Targets 1067

Motor Axons Grow Through Peripheral Nerves to Muscles 1069
The Cellular Environment Provides a Complex Set of Commands to the Growing Axon 1069

The Growth Cone Is a Sensory-Motor Structure That Recognizes and Responds to Guidance Cues 1070

Pathway Guidance Cues Act in Diverse Ways 1074

Integrins on Growth Cones Interact With Laminins in the Extracellular Matrix 1074

Molecules That Mediate Cell-Cell Adhesion Also Promote Neurite Outgrowth 1074

Netrins Are Chemoattractant Factors 1078

Ephrins and Semaphorins Guide Growth Cones by Providing Inhibitory Signals 1081

Soluble Factors Attract Some Growth Cones and Repel Others 1081

Molecules of Different Families Interact to Guide Axons to Their Destinations 1081

An Overall View 1084

Selected Readings 1084

References 1085

55 The Formation and Regeneration of Synapses 1087

Joshua R. Sanes, Thomas M. Jessell

Interactions Between Motor Neurons and Skeletal Muscles Organize the Development of the Neuromuscular Junction 1089

The Motor Nerve Organizes Differentiation of the Postsynaptic Muscle Membrane 1091

Agrin Triggers the Clustering of Acetylcholine Receptors 1092

Neuregulin Stimulates Synthesis of Acetylcholine Receptors 1094

Neural Activity Represses Synthesis of Acetylcholine Receptors in Nonsynaptic Areas 1096

Several Aspects of Postsynaptic Differentiation Are Controlled by the Motor Axon 1098

The Muscle Fiber Organizes the Differentiation of Motor Nerve Terminals 1098

Many Neuromuscular Junctions That Form in the Embryo Are Eliminated After Birth 1100

Central Synapses and Neuromuscular Junctions Develop in Similar Ways 1101

Central Nerve Terminals Develop Gradually and Are Subject to Elimination 1101

Neurotransmitter Receptors Cluster at Central Synapses 1103

The Synaptic Cleft Differs at Central and Neuromuscular Synapses 1103

The Recognition of Synaptic Targets Is Highly Specific 1105

New Neural Connections Can Reform Following Nerve Injury 1108

Both Neurons and Cells Around Them Are Affected by Damage to the Axon 1108

Regenerative Capacity Is Greater in the Peripheral Than in the Central Nervous System 1109

Therapeutic Interventions May Promote Axonal Regeneration in the Injured Central Nervous System 1110

Restoration of Function Requires Synaptic Regeneration 1111

An Overall View 1112

Selected Readings 1113

References 1113

56 Sensory Experience and the Fine-Tuning of Synaptic Connections 1115

Eric R. Kandel, Thomas M. Jessell, Joshua R. Sanes

Development of Visual Perception Requires Sensory Experience 1115

Development of Binocular Circuits in the Cortex Depends on Postnatal Neural Activity 1117

Ocular Dominance Columns Are Organized After Birth 1118

Synchronized Activity in the Pathways From Each Eye Organizes the Ocular Dominance Columns 1119

Segregation of Retinal Inputs to the Thalamus Is Driven by Spontaneous, Synchronized Neural Activity in Utero 1123

Synchronous Presynaptic Activity May Enhance the Release of Neurotrophic Factors From Target Neurons 1123

Early Intracortical Connections May Direct the Development of Orientation Columns 1125

Activity-Dependent Refinement of Connections Is a General Feature of Circuits in the Central Nervous System 1125

There Is a Critical Period in the Development of Social Behavior 1127

An Overall View 1128

Selected Readings 1129

References 1129
57 Sexual Differentiation of the Nervous System 1131
Roger A. Gorski

Sexual Differentiation of the Reproductive System Is a Fundamental Characteristic of Development 1131

Development of the Testes Depends on a Testis Determining Factor 1132

Sexual Differentiation of the Internal and External Genitalia Depends on Hormones Produced by the Testes 1132

The Brain Also Undergoes Hormonally Dependent Sexual Differentiation 1134

Gonadal Hormones Exert Permanent Effects on the Developing Central Nervous System and Transient Effects on the Adult Brain 1136

Exposure to Testicular Hormones During Development Produces Sex Differences in the Central Nervous System 1136

Estradiol Is the Masculinizing Hormone for Many Sexually Dimorphic Brain Characteristics 1138

Hormones Exert Diverse Actions on the Development of the Central Nervous System 1140

Estradiol May Prevent Apoptotic Cell Death in the Sexually Dimorphic Nucleus of the Preoptic Area 1140

Gonadal Hormones May Induce Apoptotic Cell Death in the Anteroventral Periventricular Nucleus 1140

The Action of Testosterone on Peripheral Muscles May Prevent Neuronal Death in the Spinal Nucleus of the Bulbocavernosus 1141

Hormone-Induced Modifications in the Brain Structure Are Not Limited to Development 1141

Specific Sex Differences in the Brain Control Behavior 1141

There May Be a Genetic and Anatomical Basis for Homosexuality 1143

An Overall View 1146

References 1146

58 Aging of the Brain and Dementia of the Alzheimer Type 1149
Donald L. Price

Several Hypotheses Have Been Proposed for the Molecular Mechanisms of Aging 1149

Changes in the Function and Structure of the Brain Are Associated With Aging 1150

A Variety of Senile Dementias Afflict the Elderly 1151

Alzheimer Disease Is Characterized by Several Structural Abnormalities in the Brain 1153

Alzheimer Disease Is Associated With Cytoskeletal Abnormalities in Neurons 1154

Amyloid Deposits Are One of the Hallmarks of Alzheimer Disease 1155

Several Genetic Risk Factors for Alzheimer Disease Have Been Identified 1156

Certain Mutations Increase the Risk of Early-Onset Alzheimer Disease 1156

Alleles of Genes Increase the Risk of Late-Onset Alzheimer Disease 1156

Animal Models Provide Insight Into the Molecular Mechanisms of the Disease 1157

Treatment of Alzheimer Disease 1158

An Overall View 1158

Selected Readings 1159

References 1159

Part IX
Language, Thought, Mood, and Learning, and Memory

59 Language and the Aphasias 1169
Nina F. Dronkers, Steven Pinker, Antonio Damasio

Language Is the Ability to Encode Ideas Into Signals and Must be Distinguished From Thought, Literacy, and Correct Usage 1169

Language Has a Universal Design 1170

Complex Language Develops Spontaneously in Children 1171

Languages Are Learned and the Capacity to Learn Language Is Innate 1172

Other Animals Appear to Lack Homologs of Human Language, but Language May Nonetheless Have Evolved by Darwinian Natural Selection 1173

The Study of Aphasia Led to the Discovery of Critical Brain Areas Related to Language 1174

Broca Aphasia Results From a Large Frontal Lobe Lesion 1175

People With Broca Aphasia Have Trouble Understanding Grammatically Complex Sentences 1177

Wernicke Aphasia Results From Damage to Left Temporal Lobe Structures 1179
Conduction Aphasia Results From Damage to Structures That Interact With Major Language Areas of the Brain 1180
Transcortial Motor and Sensory Aphasias Result From Damage to Areas Near Broca’s and Wernicke’s Areas 1180
Global Aphasia Is a Combination of Broca, Wernicke, and Conduction Aphasias 1181
Beyond the Classical Language Areas: Other Brain Areas Are Important for Language 1181
The Right Cerebral Hemisphere Is Important for Prosody and Pragmatics 1182
Alexia and Agraphia Are Acquired Disorders of Reading and Writing 1183
Developmental Dyslexia is a Difficulty in Learning to Read 1184
An Overall View 1185
Selected Readings 1186
References 1186

60 Disorders of Thought and Volition: Schizophrenia 1188
Eric R. Kandel
Mental Illnesses Can Be Diagnosed Using Classical Medical Criteria 1188
Schizophrenia Is Likely to Be Several Related Disorders 1189
Psychotic Episodes Are Preceded by Prodromal Signs and Followed by Residual Symptoms 1192
Genetic Predisposition Is an Important Factor 1193
Prominent Anatomical Abnormalities in the Brain Occur in Some Cases of Schizophrenia 1195
A Two-Step Model Seems Most Consistent With the Pathogenesis of Schizophrenia 1196
Antipsychotic Drugs Effective in the Treatment of Schizophrenia Act on Dopaminergic Systems 1197
Abnormalities in Dopaminergic Synaptic Transmission Are Thought to Be Associated With Schizophrenic Symptoms 1200
Excess Synaptic Transmission of Dopamine May Contribute to the Expression of Schizophrenia 1200
Distinct Anatomical Components of the Dopaminergic System Are Implicated in Schizophrenia 1201
Abnormalities in Dopaminergic Transmission Do Not Account for All Aspects of Schizophrenia 1204
An Overall View 1206

61 Disorders of Mood: Depression, Mania, and Anxiety Disorders 1209
Eric R. Kandel
The Major Mood Disorders Can Be Either Unipolar or Bipolar 1209
Unipolar Depression Is Most Likely Several Mood Disorders 1210
Bipolar Depressive (Manic-Depressive) Disorders Give Rise to Alternating Euphoria and Depression 1211
Mood Disorders Have a Strong Genetic Predisposition 1211
Familial Unipolar and Bipolar Depressions May Reflect an Abnormality in the Functioning of the Subgenual Region of the Frontal Cortex 1212
Unipolar Depressive and Manic-Depressive Disorders Can Be Treated Effectively 1213
Drugs Effective in Depression Act on Serotonergic and Noradrenergic Pathways 1216
An Abnormality in Biogenic Amine Transmission May Contribute to the Disorders of Mood 1216
Unipolar Depression May Involve Disturbances of Neuroendocrine Function 1220
There Are at Least Four Major Types of Anxiety Disorders 1220
Panic Attacks Are Brief Episodes of Terror 1221
Post-Traumatic Stress Disorder Reflects Persistent Traces Of Anxiety That Follow Traumatic Episodes 1222
Generalized Anxiety Disorder Is Characterized by Long-Lasting Worries 1222
In Obsessive-Compulsive Disorder Obtrusive Thoughts Are a Source of Anxiety and Compulsion 1223
An Overall View 1224
Selected Readings 1225
References 1225

62 Learning and Memory 1227
Eric R. Kandel, Irving Kupfermann, Susan Iversen
Memory Can Be Classified as Implicit or Explicit on the Basis of How Information Is Stored and Recalled 1228
The Distinction Between Explicit and Implicit Memory Was First Revealed With Lesions of the Limbic Association Areas of the Temporal Lobe 1229
Animal Studies Help to Understand Memory 1231
Damage Restricted to Specific Subregions of the Hippocampus Is Sufficient to Impair Explicit Memory Storage. 1233

Explicit Memory Is Stored in Different Association Cortices 1233

Semantic (Factual) Knowledge Is Stored in a Distributed Fashion in the Neocortex 1233
Episodic (Autobiographical) Knowledge About Time and Place Seems to Involve the Prefrontal Cortex 1237
Explicit Knowledge Involves at Least Four Distinct Processes 1237

Working Memory Is a Short-Term Memory Required for Both the Encoding and Recall of Explicit Knowledge 1238

 Implicit Memory Is Stored in Perceptual, Motor, and Emotional Circuits 1239

Implicit Memory Can Be Nonassociative or Associative 1240
Classical Conditioning Involves Associating Two Stimuli 1240
Operant Conditioning Involves Associating a Specific Behavior With a Reinforcing Event 1242
Associative Learning Is Not Random But Is Constrained by the Biology of the Organism 1242
Certain Forms of Implicit Memory Involve the Cerebellum and Amygdala 1243

Some Learned Behaviors Involve Both Implicit and Explicit Forms of Memory 1243

Both Explicit and Implicit Memory are Stored in Stages 1244
An Overall View 1245

Selected Readings 1245
References 1245

63 Cellular Mechanisms of Learning and the Biological Basis of Individuality1247

Eric R. Kandel

Short-Term Storage of Implicit Memory for Simple Forms of Learning Results From Changes in the Effectiveness of Synaptic Transmission 1248

Habituation Involves an Activity-Dependent Presynaptic Depression of Synaptic Transmission 1248
Sensitization Involves Presynaptic Facilitation of Synaptic Transmission 1250
Classical Conditioning Involves Presynaptic Facilitation of Synaptic Transmission That Is Dependent on Activity in Both the Presynaptic and the Postsynaptic Cell 1252

Long-Term Storage of Implicit Memory for Sensitization and Classical Conditioning Involves the cAMP-PKA-MAPK-CREB Pathway 1254

Molecular Biological Analysis of Long-Term Sensitization Reveals a Role for cAMP Signaling in Long-Term Memory 1254
Genetic Analyses of Implicit Memory Storage for Classical Conditioning Also Implicate the cAMP-PKA-CREB Pathway 1257

Explicit Memory in Mammals Involves Long-Term Potentiation in the Hippocampus 1259

Long-Term Potentiation in the Mossy Fiber Pathway Is Nonassociative 1260
Long-Term Potentiation in the Schaffer Collateral and Perforant Pathways Is Associative 1260
Long-Term Potentiation Has a Transient Early and a Consolidated Late Phase 1262
Genetic Interference With Long-Term Potentiation Is Reflected in the Properties of Place Cells in the Hippocampus 1264
Associative Long-Term Potentiation Is Important for Spatial Memory 1267

Is There a Molecular Alphabet for Learning? 1272
Changes in the Somatotopic Map Produced by Learning May Contribute to the Biological Expression of Individuality 1274

Neuronal Changes Associated With Learning Provide Insights Into Psychiatric Disorders 1275

An Overall View 1277

Selected Readings 1277
References 1277

Appendices

A Current Flow in Neurons 1280
John Koester

Definition of Electrical Parameters 1280
Potential Difference (V or E) 1280
Current (I) 1280
Conductance (g) 1281
Capacitance (C) 1281

Rules for Circuit Analysis 1282
Conductance 1282
Current 1283
B Ventricular Organization of Cerebrospinal Fluid: Blood-Brain Barrier, Brain Edema, and Hydrocephalus 1288
John Laterra, Gary W. Goldstein

Differentiated Properties of Brain Capillary Endothelial Cells Account for the Blood-Brain Barrier 1288
Anatomy of the Blood-Brain Barrier 1288
Selectivity of the Blood-Brain Barrier 1289
The Metabolic Blood-Brain Barrier 1293
Some Areas of the Brain Do Not Have a Blood-Brain Barrier 1293
Brain-Derived Signals Induce Endothelial Cells to Express Blood-Brain Barrier Properties 1293
Disorders of the Blood-Brain Barrier 1294

Cerebrospinal Fluid Has Several Functions 1295
Cerebrospinal Fluid Is Secreted by the Choroid Plexus 1295
The Composition of Cerebrospinal Fluid May Be Altered in Disease 1297
Increased Intracranial Pressure May Harm the Brain 1298

Brain Edema Is a State of Increased Brain Volume Due to Increased Water Content 1299
Hydrocephalus Is an Increase in the Volume of the Cerebral Ventricles 1299

Selected Readings 1300
References 1300

C Circulation of the Brain 1302
John C. M. Brust
The Blood Supply of the Brain Can Be Divided Into Arterial Territories 1302
The Cerebral Vessels Have Unique Physiological Responses 1305
A Stroke Is the Result of Disease Involving Blood Vessels 1306

D Consciousness and the Neurobiology of the Twenty-First Century 1317
James H. Schwartz
Early Ideas About Consciousness Were Dualistic 1317
The Modern View of Consciousness Arose in the Nineteenth Century 1317
Modern Thinking About Consciousness Is Materialistic 1318
Can Consciousness Be Explained? 1318

Selected Readings 1319
Index 1321