CONTENTS

CONTRIBUTORS .. ix
PREFACE ... xiii

Part I. Survey Lectures on the Mathematical
Foundations of the Finite Element Method
Ivo Babuška and A. K. Aziz

Foreword ... 3
1. Preliminary Remarks ... 5
2. The Fundamental Notions ... 15
3. Properties of Solutions of Elliptic
 Boundary Value Problems 47
4. Theory of Approximation ... 83
5. Variational Principles .. 111
6. Rate of Convergence of the Finite Element Method 185
7. One Parameter Families of Variational Principles 243
8. Finite Element Method for Non-Smooth
 Domains and Coefficients 265
9. The Problems of Perturbations in the
 Finite Element Method .. 285
10. The Eigenvalue Problem .. 303
11. The Finite Element Method for Time
 Dependent Problems ... 345

Part II. Invited Hour Lectures

Piecewise Analytic Interpolation and Approximation
in Triangulated Polygons .. 363
 Garrett Birkhoff

Approximation of Steklov Eigenvalues of Non-Selfadjoint
Second Order Elliptic Operators 387
 James H. Bramble and John E. Osborn
CONTENTS

The Combined Effect of Curved Boundaries and Numerical Integration in Isoparametric Finite Element Methods 409

P. G. Ciarlet and P.-A. Raviart

A Superconvergence Result for the Approximate Solution of the Heat Equation by a Collocation Method 475

Jim Douglas, Jr.

Some L^2 Error Estimates for Parabolic Galerkin Methods 491

Todd Dupont

Computational Aspects of the Finite Element Method 505

S. C. Eisenstat and M. H. Schultz

Effects of Quadrature Errors in Finite Element Approximation of Steady State, Eigenvalue, and Parabolic Problems 525

George J. Fix

Experience with the Patch Test for Convergence of Finite Elements 557

Bruce M. Irons and Abdur Razzaque

Higher Order Singularities for Interface Problems 589

R. B. Kellogg

On Dirichlet Problems Using Subspaces with Nearly Zero Boundary Conditions 603

J. Nitsche

Generalized Conjugate Functions for Mixed Finite Element Approximations of Boundary Value Problems 629

J. T. Oden

Finite Element Formulation by Variational Principles with Relaxed Continuity Requirements 671

Theodore H. H. Pian

Variational Crimes in the Finite Element Method 689

Gilbert Strang

Spline Approximation and Difference Schemes for the Heat Equation 711

Vidar Thomée
CONTENTS

Part III. Short Communications

The Extension and Application of Sard Kernel Theorems to Compute Finite Element Error Bounds 749
 R. E. Barnhill, J. A. Gregory, and J. R. Whiteman

Two Types of Piecewise Quadratic Spaces and Their Order of Accuracy for Poisson's Equation 757
 Alan E. Berger

A Method of Galerkin Type Achieving Optimum L^2 Accuracy for First Order Hyperbolic and Equations of Schrödinger Type 763
 J. E. Dendy, Jr.

Richardson Extrapolation for Parabolic Galerkin Methods 767
 G. Fairweather and J. P. Johnson

Geometric Aspects of the Finite Element Method 769
 William J. Gordon and Charles A. Hall

The Use of Interpolatory Polynomials for a Finite Element Solution of the Multigroup Diffusion Equation 785
 H. G. Kaper, G. K. Leaf, and A. J. Lindeman

A "Local" Basis of Generalized Splines over Right Triangles Determined from a Nonuniform Partitioning of the Plane 791
 Lois Mansfield

Least Square Polynomial Spline Approximation 793
 Paul D. Patent

Subspaces with Accurately Interpolated Boundary Conditions 797
 Ridgway Scott