SPECTRA OF PARTIAL DIFFERENTIAL OPERATORS

BY

MARTIN SCHECHTER

Belfer Graduate School of Science,

Yeshiva University

1971

NORTH-HOLLAND PUBLISHING COMPANY - AMSTERDAM • LONDON
§ 2. A condition for $D(q) \supset H^{p,q}$ 105
§ 3. Bessel potentials 107
§ 4. Some consequences 111
§ 5. s-extensions 114

CHAPTER 7. Operators bounded from below 121
§ 1. Introduction 121
§ 2. Regularly accretive extensions 122
§ 3. Invariance of the essential spectrum 126
§ 4. Perturbation by an operator 129
§ 5. An illustration 132
§ 6. Essential spectrum bounded from below 134
§ 7. Strongly elliptic operators 136
§ 8. The remaining proofs 140
§ 9. Perturbation by a potential. Elliptic case 144
§ 10. Perturbation by an operator. Elliptic case 148

CHAPTER 8. Self-adjoint extensions 152
§ 1. Existence 152
§ 2. Extensions with special properties 155
§ 3. Intervals containing the essential spectrum 157
§ 4. Essentially self-adjoint operators 160
§ 5. Finite negative spectrum 161

CHAPTER 9. Second order operators 167
§ 1. Introduction 167
§ 2. Essential self-adjointness 171
§ 3. Some observations 176
§ 4. Comparison of operators 185
§ 5. Estimating the essential spectrum 191
§ 6. The quadratic form $J(\varphi)$ 194
§ 7. Adding of spectra 200
§ 8. Separation of coordinates 209
§ 9. Clusters 212

CHAPTER 10. Applications 218
§ 1. The Schrödinger operator for a particle 218
§ 2. Two particle systems 220
§ 3. The existence of bound states 223
§ 4. Systems of N particles 226
§ 5. The Zeeman effect 229
§ 6. Stability 235
CONTENTS

CHAPTER 11. Notes, remarks and references
§ 1. Chapter 1 240
§ 2. Chapter 2 244
§ 3. Chapter 3 249
§ 4. Chapter 4 251
§ 5. Chapter 5 254
§ 6. Chapter 6 255
§ 7. Chapter 7 256
§ 8. Chapter 8 257
§ 9. Chapter 9 258
§ 10. Chapter 10 258

BIBLIOGRAPHY 260

LIST OF SYMBOLS 265

SUBJECT INDEX 267