Contents

1 Introduction: A New Age of Dynamics 1
 1.1 What Is Chaotic Dynamics? 1
 Why Should Engineers Study Chaotic Dynamics?, 6
 Sources of Chaos in Continuum Physics, 7
 Where Have Chaotic Vibrations Been Observed?, 9
 1.2 Classical Nonlinear Vibration Theory: A Brief Review 10
 Linear Vibration Theory, 10
 Nonlinear Vibration Theory, 12
 Local Geometric Theory of Dynamics, 19
 Bifurcations, 21
 1.3 Maps and Flows 24
 Three Paradigms for Chaos, 25
 Henon and Horseshoe Maps, 28
 The Lorenz Attractor and Fluid Chaos, 30
 Closing Comments, 35

2 How to Identify Chaotic Vibrations 37
 Nonlinear System Elements, 39
 Random Inputs, 41
 Observation of Time History, 42
 Phase Plane History, 43
 Fourier Spectrum, 45
 Poincaré Maps, 47
3 A Survey of Systems with Chaotic Vibrations

3.1 New Paradigms in Dynamics

3.2 Mathematical Models of Chaotic Physical Systems

Thermal Convection in Fluids, 68
Thermal Convection Model of Moore and Spiegel, 70
Supersonic Panel Flutter, 73
Impact Force Problems, 73
Double-Well Potential Problems, 77
Chaos in a Pendulum, 79
Spherical Pendulum, 80
The Kicked Rotor, 81
Circle Map, 84
Other Rigid Body Problems, 84
Aeroelastic Flutter, 84
Nonlinear Electrical Circuits, 85
Magnetomechanical Models, 88
Control System Chaos, 89

3.3 Physical Experiments in Chaotic Systems

Early Observations of Chaotic Vibrations, 91
Rigid-Body Systems, 92
Magnetic Compass Needle, 93
Magnetically Levitated Vehicles, 94
Chaos in Elastic Continua, 96
Three-Dimensional Elastica and Strings, 102
Impact Print Hammer, 102
Nonlinear Circuits, 104
Chaotic Dynamics in Fluid Systems, 111

4 Experimental Methods in Chaotic Vibrations

4.1 Introduction: Experimental Goals

4.2 Nonlinear Elements in Dynamical Systems

Material Nonlinearities, 124
Kinematic Nonlinearities, 124
Nonlinear Body Forces, 125
Geometric Nonlinearities, 126

4.3 Experimental Controls
Frequence Bandwidth, 128

4.4 Phase Space Measurements
Pseudo-Phase-Space Measurements, 129

4.5 Bifurcation Diagrams

4.6 Experimental Poincaré Maps
Position Triggered Poincaré Maps, 135
Construction of One-Dimensional Maps from Multidimensional Attractors, 139
Double Poincaré Maps, 142

4.7 Quantitative Measures of Chaotic Vibrations
Frequency Spectra–FFT, 148
Fractal Dimension, 150
Lyapunov Exponents, 151
Probability or Invariant Distributions, 151

5 Criteria for Chaotic Vibrations
5.1 Introduction

5.2 Empirical Criteria for Chaos
Forced Oscillations of a Nonlinear Inductor: Duffing's Equation, 157
Forced Oscillations of a Particle in a Two-Well Potential: Duffing's Equation, 158
Rayleigh–Benard Convection: Lorenz Equations, 160
Forced Vibrations of a Two-Degree-of-Freedom Oscillator in a Two-Well Potential, 161
Forced Motions of a Rotating Dipole in Magnetic Fields: The Pendulum Equation, 162
Forced Oscillations of a Nonlinear RLC Circuit, 163
Harmonically Driven Surface Waves in Fluid Cylinder, 163

5.3 Theoretical Predictive Criteria
Period-Doubling Criterion, 166
Homoclinic Orbits and Horseshoe Maps, 172
Intermittent and Transient Chaos, 181
Chirikov's Overlap Criterion for Conservative Chaos, 183
Multiwell Potential Criteria, 187
Contents

5.4 Lyapunov Exponents
Numerical Calculation of the Largest Lyapunov Exponent, 195
Lyapunov Spectrum, 200

6 Fractal Concepts in Nonlinear Dynamics
205

6.1 Introduction

Koch Curve, 206
Cantor Set, 207
The Devil’s Staircase, 208
Fractal Dimension, 209

6.2 Measures of Fractal Dimension

Pointwise Dimension, 214
Correlation Dimension, 216
Information Dimension, 217
Relation Between Dimension Definitions and Lyapunov Exponents, 218
How Useful Is Fractal Dimension for Vibration Problems?, 222

6.3 Fractal Dimension of Strange Attractors

Discretization of Phase Space Variables, 223
Fractal Dimension of Poincaré Maps, 226
Dimension Calculation from Single Time Series Measurement, 229

6.4 Optical Measurement of Fractal Dimension

An Optical Parallel Processor for the Correlation Function, 237

6.5 Fractal Basin Boundaries

Basins of Attraction, 242
Sensitivity to Initial Conditions: Transient Motion in a Two-Well Potential, 243
Fractal Basin Boundary: Forced Motion in a Two-Well Potential, 244
Homoclinic Orbits: A Criterion for Fractal Basin Boundaries, 246
Dimension of Basin Boundaries and Uncertainty, 250
Transient Decay Times: Sensitivity to Initial Conditions, 250
Other Applications, 253
Fractal Boundaries for Chaos in Parameter Space, 253

6.6 Complex Maps and the Mandelbrot Set

258
Appendix A. Glossary of Terms in Chaotic and Nonlinear Vibrations 261

Appendix B. Numerical Experiments in Chaos 269
B.1 Logistic Equation—Period Doubling 269
B.2 Lorenz Equations 270
B.3 Intermittency and the Lorenz Equation 271
B.4 Henon Attractor 271
B.5 Duffing's Equation: Ueda Attractor 272
B.6 Two-Well Potential Duffing–Holmes Attractor 272
B.7 Cubic Map (Holmes) 273
B.8 Bouncing Ball Map (Standard Map) 273
B.9 Circle Map: Mode Locking, Winding Numbers, and Fairey Trees 274
B.10 Rössler Attractor: Chemical Reactions, Return Maps 275
B.11 Fractal Basin Boundaries: Kaplan–Yorke Map 276
B.12 Torus Maps 277

Appendix C. Chaotic Toys 279
C.1 The Chaotic Elastica: A Desktop Chaotic Vibration Experiment 280
C.2 The “Moon Beam” or Chaotic Buckling Experiment 281
C.3 A Chaotic Double Pendulum or “Space Ball” 284
C.4 Neon Bulb Chaotic Toy 285

References 287

Author Index 301

Subject Index 305