Contents

Preface
xiii

1 **Introduction**
1.1 Gauge invariance
1.2 Reasons for gauge theories of strong and electroweak interactions
QCD
Electroweak theory
1.3 Non-abelian gauge field lagrangian
$U(1)$ gauge symmetry
Non-abelian gauge symmetry
Problems

2 **Path integral formulation of quantum field theory**
2.1 Path integrals in quantum mechanics
Transition matrix elements as path integrals
Matrix elements of position operators
2.2 Vacuum-to-vacuum transitions and the imaginary time formalism
General discussion
Harmonic oscillator
Euclidean Green's functions
2.3 Path integral formulation of quantum field theory
Green's functions as path integrals
Action quadratic in fields
Gaussian integration
2.4 Introduction to perturbation theory
Perturbation theory and the generating functional
Wick's theorem
An example: four-point Green's function in $\lambda\Phi^4$
Momentum space
2.5 Path integrals for fermions; Grassmann algebra
Anticommuting c-numbers
Fermion propagator
2.6 Generating functionals for Green's functions and proper vertices; effective potential

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.1</td>
<td>Gauge invariance</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>Reasons for gauge theories of strong and electroweak interactions</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>QCD</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Electroweak theory</td>
<td>5</td>
</tr>
<tr>
<td>1.3</td>
<td>Non-abelian gauge field lagrangian</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>$U(1)$ gauge symmetry</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Non-abelian gauge symmetry</td>
<td>12</td>
</tr>
<tr>
<td>1</td>
<td>Problems</td>
<td>15</td>
</tr>
<tr>
<td>2</td>
<td>Path integral formulation of quantum field theory</td>
<td>17</td>
</tr>
<tr>
<td>2.1</td>
<td>Path integrals in quantum mechanics</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>Transition matrix elements as path integrals</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>Matrix elements of position operators</td>
<td>20</td>
</tr>
<tr>
<td>2.2</td>
<td>Vacuum-to-vacuum transitions and the imaginary time formalism</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>General discussion</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>Harmonic oscillator</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>Euclidean Green's functions</td>
<td>27</td>
</tr>
<tr>
<td>2.3</td>
<td>Path integral formulation of quantum field theory</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>Green's functions as path integrals</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>Action quadratic in fields</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>Gaussian integration</td>
<td>33</td>
</tr>
<tr>
<td>2.4</td>
<td>Introduction to perturbation theory</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>Perturbation theory and the generating functional</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>Wick's theorem</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>An example: four-point Green's function in $\lambda\Phi^4$</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td>Momentum space</td>
<td>41</td>
</tr>
<tr>
<td>2.5</td>
<td>Path integrals for fermions; Grassmann algebra</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td>Anticommuting c-numbers</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td>Fermion propagator</td>
<td>46</td>
</tr>
<tr>
<td>2.6</td>
<td>Generating functionals for Green's functions and proper vertices; effective potential</td>
<td>48</td>
</tr>
</tbody>
</table>
Contents

Classification of Green's functions and generating functionals 48
Effective action 50
Spontaneous symmetry breaking and effective action 52
Effective potential 54
2.7 Green's functions and the scattering operator 55
Problems 61

3 Feynman rules for Yang–Mills theories 64
3.1 Faddeev–Popov determinant 64
Gauge invariance and the path integral 64
Faddeev–Popov determinant 66
Examples 69
Non-covariant gauges 71
3.2 Feynman rules for QCD 73
Calculation of the Faddeev–Popov determinant 73
Feynman rules 74
3.3 Unitarity, ghosts, Becchi–Rouet–Stora transformation 78
Unitarity and ghosts 78
BRS and anti-BRS symmetry 81
Problems 85

4 Introduction to the theory of renormalization 86
4.1 Physical sense of renormalization and its arbitrariness 86
Bare and 'physical' quantities 86
Counterterms and the renormalization conditions 89
Arbitrariness of renormalization 90
Final remarks 93
4.2 Classification of the divergent diagrams 94
Structure of the UV divergences by momentum power counting 94
Classification of divergent diagrams 95
Necessary counterterms 98
4.3 $\lambda\Phi^4$: low order renormalization 100
Feynman rules including counterterms 100
Calculation of Fig. 4.8(b) 102
Comments on analytic continuation to $n \neq 4$ dimensions 104
Lowest order renormalization 105

5 Quantum electrodynamics 109
5.1 Ward–Takahashi identities 111
General derivation by the functional technique 111
Examples 112
5.2 Lowest order QED radiative corrections by the dimensional regularization technique 115
General introduction 115
Vacuum polarization 116
Electron self-energy correction 118
Electron self-energy: IR singularities regularized by photon mass 120
On-shell vertex correction 121
5.3 Massless QED 124
5.4 Dispersion calculation of $O(\alpha)$ virtual corrections in massless QED, in $(4 \pm \varepsilon)$ dimensions 126
Self-energy calculation 126
Vertex calculation 128
5.5 Coulomb scattering and the IR problem 129
Corrections of order α 129
IR problem to all orders in α 134
Problems 136
6 Renormalization group 138
6.1 Renormalization group equation (RGE) 138
Derivation of the RGE 138
Solving the RGE 141
Green's functions for rescaled momenta 143
RGE in QED 144
6.2 Calculation of the renormalization group functions β, γ, γ_m 145
6.3 Fixed points; effective coupling constant 147
Fixed points 147
Effective coupling constant 150
6.4 Renormalization scheme and gauge dependence of the RGE parameters 152
Renormalization scheme dependence 152
Effective α in QED 153
Gauge dependence of the β-function 154
Problems 156
7 Scale invariance and operator product expansion 157
7.1 Scale invariance 157
Scale transformations 157
Dilatation current 159
Conformal transformations 161
7.2 Broken scale invariance 163
General discussion 163
Anomalous breaking of scale invariance 164
7.3 Dimensional transmutation 168
7.4 Operator product expansion (OPE) 169
Short distance expansion 169
Light-cone expansion 173
7.5 The relevance of the light-cone 174
Electron–positron annihilation 174
Deep inelastic hadron leptoproduction 175
Wilson coefficients and moments of the structure function 179
7.6 Renormalization group and OPE 181
Renormalization of composite operators 181
RGE for Wilson coefficients 183
OPE beyond perturbation theory 185
Problems 185
8 Quantum chromodynamics 188
8.1 General introduction 188
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Renormalization and BRS invariance; counterterms</td>
<td>188</td>
</tr>
<tr>
<td>Asymptotic freedom of QCD</td>
<td>190</td>
</tr>
<tr>
<td>The Slavnov–Taylor identities</td>
<td>192</td>
</tr>
<tr>
<td>8.2 The background field method</td>
<td>194</td>
</tr>
<tr>
<td>8.3 The structure of the vacuum in non-abelian gauge theories</td>
<td>196</td>
</tr>
<tr>
<td>Homotopy classes and topological vacua</td>
<td>196</td>
</tr>
<tr>
<td>Physical vacuum</td>
<td>199</td>
</tr>
<tr>
<td>Θ-vacuum and the functional integral formalism</td>
<td>201</td>
</tr>
<tr>
<td>8.4 Perturbative QCD and hard collisions</td>
<td>204</td>
</tr>
<tr>
<td>Parton picture</td>
<td>204</td>
</tr>
<tr>
<td>Factorization theorem</td>
<td>205</td>
</tr>
<tr>
<td>8.5 Deep inelastic electron–nucleon scattering in first order QCD</td>
<td>206</td>
</tr>
<tr>
<td>(Feynman gauge)</td>
<td></td>
</tr>
<tr>
<td>Structure functions and Born approximation</td>
<td>206</td>
</tr>
<tr>
<td>Deep inelastic quark structure functions in the first order in the</td>
<td>211</td>
</tr>
<tr>
<td>strong coupling constant</td>
<td></td>
</tr>
<tr>
<td>Final result for the quark structure functions</td>
<td>216</td>
</tr>
<tr>
<td>Hadron structure functions; probabilistic interpretation</td>
<td>217</td>
</tr>
<tr>
<td>8.6 Light-cone variables, light-like gauge</td>
<td>219</td>
</tr>
<tr>
<td>8.7 Beyond the one-loop approximation</td>
<td>224</td>
</tr>
<tr>
<td>Comments on the IR problem in QCD</td>
<td>226</td>
</tr>
<tr>
<td>Problems</td>
<td>227</td>
</tr>
<tr>
<td>9 Chiral symmetry; spontaneous symmetry breaking</td>
<td>229</td>
</tr>
<tr>
<td>9.1 Chiral symmetry of the QCD lagrangian</td>
<td>229</td>
</tr>
<tr>
<td>9.2 Hypothesis of spontaneous chiral symmetry breaking in strong</td>
<td>232</td>
</tr>
<tr>
<td>interactions</td>
<td></td>
</tr>
<tr>
<td>9.3 Phenomenological chirally symmetric model of the strong</td>
<td>235</td>
</tr>
<tr>
<td>interactions ((\sigma)-model)</td>
<td></td>
</tr>
<tr>
<td>9.4 Goldstone bosons as eigenvectors of the mass matrix and poles of</td>
<td>238</td>
</tr>
<tr>
<td>Green's functions in theories with elementary scalars</td>
<td></td>
</tr>
<tr>
<td>Goldstone bosons as eigenvectors of the mass matrix</td>
<td>238</td>
</tr>
<tr>
<td>General proof of Goldstone's theorem</td>
<td>241</td>
</tr>
<tr>
<td>9.5 Patterns of spontaneous symmetry breaking</td>
<td>243</td>
</tr>
<tr>
<td>9.6 Goldstone bosons in QCD</td>
<td>248</td>
</tr>
<tr>
<td>10 Spontaneous and explicit global symmetry breaking</td>
<td>252</td>
</tr>
<tr>
<td>10.1 Internal symmetries and Ward identities</td>
<td>252</td>
</tr>
<tr>
<td>Preliminaries</td>
<td>252</td>
</tr>
<tr>
<td>Ward identities from the path integral</td>
<td>254</td>
</tr>
<tr>
<td>Comparison with the operator language</td>
<td>256</td>
</tr>
<tr>
<td>Ward identities and short distance singularities of the operator</td>
<td>258</td>
</tr>
<tr>
<td>products</td>
<td></td>
</tr>
<tr>
<td>Renormalization of currents</td>
<td>260</td>
</tr>
<tr>
<td>10.2 Quark masses and chiral perturbation theory</td>
<td>262</td>
</tr>
<tr>
<td>Simple approach</td>
<td>262</td>
</tr>
<tr>
<td>Approach based on use of the Ward identity</td>
<td>263</td>
</tr>
<tr>
<td>10.3 Dashen's theorems</td>
<td>265</td>
</tr>
<tr>
<td>Formulation of Dashen's theorems</td>
<td>265</td>
</tr>
<tr>
<td>Dashen's conditions and global symmetry broken by weak gauge</td>
<td>266</td>
</tr>
<tr>
<td>interactions</td>
<td></td>
</tr>
</tbody>
</table>
Contents

10.4 Electromagnetic $\pi^+-\pi^0$ mass difference and spectral function sum rules 270
 Electromagnetic $\pi^+-\pi^0$ mass difference from Dashen's formula 270
 Spectral function sum rules 271
 Results 273

11 Spontaneous breaking of gauge symmetry 276
11.1 Higgs mechanism 276
11.2 Spontaneous gauge symmetry breaking by radiative corrections 280
11.3 Dynamical breaking of gauge symmetries and vacuum alignment 285
 Dynamical breaking of gauge symmetry 285
 Examples 288
 Problems 293

12 Chiral anomalies 295
12.1 Triangle diagram and different renormalization conditions 295
 Introduction 295
 Calculation of the triangle amplitude 297
 Different renormalization constraints for the triangle amplitude 301
 Important comments 303
12.2 Some physical consequences of the chiral anomalies 306
 Chiral invariance in spinor electrodynamics 306
 $\pi^0 \rightarrow 2\gamma$ 307
 Chiral anomaly for the axial $U(1)$ current in QCD; $U_A(1)$ problem 309
 Anomaly cancellation in the $SU(2) \times U(1)$ electroweak theory 311
 Anomaly free models 314
12.3 Anomalies and the path integral 314
 Introduction 314
 Abelian anomaly 316
 Non-abelian anomaly and gauge invariance 316
 Consistent and covariant anomaly 320
12.4 Anomalies from the path integral in Euclidean space 321
 Introduction 321
 Abelian anomaly 323
 Non-abelian anomaly 325
 Problems 327

13 Effective lagrangians 329
13.1 Non-linear realization of the symmetry group 329
 Non-linear σ-model 329
 Effective lagrangian in the $\xi_a(x)$ basis 333
 Matrix representation for Goldstone boson fields 336
13.2 Effective lagrangians and anomalies 338
 Abelian anomaly 338
 The Wess–Zumino term 339
 Problems 341

14 Introduction to supersymmetry 342
14.1 Introduction 342
14.2 The supersymmetry algebra 343
Contents

14.3 Simple consequences of the supersymmetry algebra 346
14.4 Superspace and superfields for $N = 1$ supersymmetry 348
 Superspace 348
 Superfields 351
14.5 Supersymmetric lagrangian; Wess–Zumino model 353
14.6 Supergraphs and the non-renormalization theorem 356

Appendix A: Feynman rules and Feynman integrals 363
 Feynman rules for the $\lambda\Phi^4$ theory 363
 Feynman rules for QED 364
 Feynman rules for QCD 365
 Dirac algebra in n dimensions 366
 Feynman parameters 367
 Feynman integrals in n dimensions 367
 Gaussian integrals 368
 λ-parameter integrals 368
 Feynman integrals in light-like gauge $nA = 0, n^2 = 0$ 368
 Convention for the logarithm 369
 Spence functions 370

Appendix B: Elements of group theory 371
 Definitions 371
 Transformation of operators 372
 Complex and real representations 373
 Traces 374
 σ-model 375

Appendix C: Chiral, Weyl and Majorana spinors 377
 Definitions 377
 Lorentz transformation properties of Weyl spinors 379
 Free particle solutions of the massless Dirac equation 383

References 385
Index 391