Algorithmic
Graph Theory
and Perfect Graphs

Martin Charles Golumbic
Courant Institute of Mathematical Sciences
New York University
New York, New York
Contents

Foreword xiii
Preface xv
Acknowledgments xvii
List of Symbols xix

CHAPTER 1 Graph Theoretic Foundations
1. Basic Definitions and Notations 1
2. Intersection Graphs 9
3. Interval Graphs—A Sneak Preview of the Notions Coming Up 13
4. Summary 17
 Exercises 18
 Bibliography 20

CHAPTER 2 The Design of Efficient Algorithms
1. The Complexity of Computer Algorithms 22
2. Data Structures 31
3. How to Explore a Graph 37
4. Transitive Tournaments and Topological Sorting 42
 Exercises 45
 Bibliography 48
CHAPTER 3 Perfect Graphs
1. The Star of the Show 51
2. The Perfect Graph Theorem 53
3. p-Critical and Partitionable Graphs 58
4. A Polyhedral Characterization of Perfect Graphs 62
5. A Polyhedral Characterization of p-Critical Graphs 65
6. The Strong Perfect Graph Conjecture 71
Exercises 75
Bibliography 77

CHAPTER 4 Triangulated Graphs
1. Introduction 81
2. Characterizing Triangulated Graphs 81
3. Recognizing Triangulated Graphs by Lexicographic Breadth-First Search 84
4. The Complexity of Recognizing Triangulated Graphs 87
5. Triangulated Graphs as Intersection Graphs 91
6. Triangulated Graphs Are Perfect 94
7. Fast Algorithms for the COLORING, CLIQUE, STABLE SET, and CLIQUE-COVER Problems on Triangulated Graphs 98
Exercises 100
Bibliography 102

CHAPTER 5 Comparability Graphs
1. Γ-Chains and Implication Classes 105
2. Uniquely Partially Orderable Graphs 109
3. The Number of Transitive Orientations 113
4. Schemes and G-Decompositions—An Algorithm for Assigning Transitive Orientations 120
5. The Γ*-Matroid of a Graph 124
6. The Complexity of Comparability Graph Recognition 129
7. Coloring and Other Problems on Comparability Graphs 132
Contents

8. The Dimension of Partial Orders
 Exercises
 Bibliography
 135
 139
 142

CHAPTER 6 Split Graphs
1. An Introduction to Chapters 6–8: Interval, Permutation, and Split Graphs
 149
2. Characterizing Split Graphs
 149
3. Degree Sequences and Split Graphs
 Exercises
 Bibliography
 152
 155
 156

CHAPTER 7 Permutation Graphs
1. Introduction
 157
2. Characterizing Permutation Graphs
 158
3. Permutation Labelings
 160
4. Applications
 162
5. Sorting a Permutation Using Queues in Parallel
 Exercises
 164
 168
 169

CHAPTER 8 Interval Graphs
1. How It All Started
 171
2. Some Characterizations of Interval Graphs
 172
3. The Complexity of Consecutive 1’s Testing
 175
4. Applications of Interval Graphs
 181
5. Preference and Indifference
 185
6. Circular-Arc Graphs
 Exercises
 Bibliography
 188
 193
 197

CHAPTER 9 Superperfect Graphs
1. Coloring Weighted Graphs
 203
2. Superperfection
 206
3. An Infinite Class of Superperfect Noncomparability Graphs
 209
CHAPTER 10

Threshold Graphs

1. The Threshold Dimension 219
2. Degree Partition of Threshold Graphs 223
3. A Characterization Using Permutations 227
4. An Application to Synchronizing Parallel Processes 229
 Exercises 231
 Bibliography 234

CHAPTER 11

Not So Perfect Graphs

1. Sorting a Permutation Using Stacks in Parallel 235
2. Intersecting Chords of a Circle 237
3. Overlap Graphs 242
4. Fast Algorithms for Maximum Stable Set and Maximum Clique of These Not So Perfect Graphs 244
5. A Graph Theoretic Characterization of Overlap Graphs 248
 Exercises 251
 Bibliography 253

CHAPTER 12

Perfect Gaussian Elimination

1. Perfect Elimination Matrices 254
2. Symmetric Matrices 256
3. Perfect Elimination Bipartite Graphs 259
4. Chordal Bipartite Graphs 261
 Exercises 264
 Bibliography 266
Appendix

A. A Small Collection of NP-Complete Problems 269
B. An Algorithm for Set Union, Intersection, Difference, and Symmetric Difference of Two Subsets 270
C. Topological Sorting: An Example of Algorithm 2.4 271
D. An Illustration of the Decomposition Algorithm 273
F. The Properties C, \overline{C}, T, \overline{T} Illustrated 275

Index 277