# Contents

1 Preliminaries
   1.1 Geophysical Fluid Dynamics  1
   1.2 The Rossby Number  2
   1.3 Density Stratification  8
   1.4 The Equations of Motion in a Nonrotating Coordinate Frame  10
   1.5 Rotating Coordinate Frames  14
   1.6 Equations of Motion in a Rotating Coordinate Frame  17
   1.7 Coriolis Acceleration and the Rossby Number  20

2 Fundamentals
   2.1 Vorticity  22
   2.2 The Circulation  28
   2.3 Kelvin's Theorem  33
   2.4 The Vorticity Equation  34
   2.5 Potential Vorticity  38
   2.6 The Thermal Wind  42
   2.7 The Taylor–Proudman Theorem  43
   2.8 Geostrophic Motion  45
   2.9 Consequences of the Geostrophic and Hydrostatic Approximations  51
   2.10 Geostrophic Degeneracy  55

3 Inviscid Shallow-Water Theory
   3.1 Introduction  57
   3.2 The Shallow-Water Model  58


3.3 The Shallow-Water Equations 59
3.4 Potential-Vorticity Conservation: Shallow-Water Theory 63
3.5 Integral Constraints 65
3.6 Small-Amplitude Motions 67
3.7 Linearized Geostrophic Motion 69
3.8 Plane Waves in a Layer of Constant Depth 71
3.9 Poincaré and Kelvin Waves 75
3.10 The Rossby Wave 81
3.11 Dynamic Diagnosis of the Rossby Wave 84
3.12 Quasigeostrophic Scaling in Shallow-Water Theory 86
3.13 Steady Quasigeostrophic Motion 93
3.14 Inertial Boundary Currents 94
3.15 Quasigeostrophic Rossby Waves 99
3.16 The Mechanism for the Rossby Wave 102
3.17 The Beta-Plane 105
3.18 Rossby Waves in a Zonal Current 108
3.19 Group Velocity 111
3.20 The Method of Multiple Time Scales 118
3.21 Energy and Energy Flux in Rossby Waves 121
3.22 The Energy Propagation Diagram 123
3.23 Reflection and the Radiation Condition 124
3.24 Rossby Waves Produced by an Initial Disturbance 130
3.25 Quasigeostrophic Normal Modes in Closed Basins 144
3.26 Resonant Interactions 153
3.27 Energy and Enstrophy 164
3.28 Geostrophic Turbulence 169

Appendix to Chapter 3 178

4 Friction and Viscous Flow 179

4.1 Introduction 179
4.2 Turbulent Reynolds Stresses 181
4.3 The Ekman Layer 185
4.4 The Nature of Nearly Frictionless Flow 194
4.5 Boundary-Layer Theory 200
4.6 Quasigeostrophic Dynamics in the Presence of Friction 212
4.7 Spin-Down 216
4.8 Steady Motion 217
4.9 Ekman Layer on a Sloping Surface 219
4.10 Ekman Layer on a Free Surface 226
4.11 Quasigeostrophic Potential Vorticity Equation with Friction and Topography 233
4.12 The Decay of a Rossby Wave 236
4.13 Side-Wall Friction Layers 238
4.14 The Dissipation of Enstrophy in Geostrophic Turbulence 246

5 Homogeneous Models of the Wind-Driven Oceanic Circulation 254

5.1 Introduction 254
5.2 The Homogeneous Model 257
5.3 The Sverdrup Relation 263
5.4 Meridional Boundary Layers: the Munk Layer 271
5.5 Stommel's Model: Bottom Friction Layer 282
5.6 Inertial Boundary-Layer Theory 288
5.7 Inertial Currents in the Presence of Friction 294
5.8 Rossby Waves and the Westward Intensification of the Oceanic Circulation 296
5.9 Dissipation Integrals for Steady Circulations 299
5.10 Free Inertial Modes 305
5.11 Numerical Experiments 308
5.12 Ekman Upwelling Circulations 315
5.13 The Effect of Bottom Topography 326
5.14 Concluding Remarks on the Homogeneous Model 334

6 Quasigeostrophic Motion of a Stratified Fluid on a Sphere 336

6.1 Introduction 336
6.2 The Equations of Motion in Spherical Coordinates: Scaling 337
6.3 Geostrophic Approximation: \( \varepsilon = O(L/r_0) \ll 1 \) 345
6.4 The Concept of Static Stability 351
6.5 Quasigeostrophic Potential-Vorticity Equation for Atmospheric Synoptic Scales 335
6.6 The Ekman Layer in a Stratified Fluid 360
6.7 Boundary Conditions for the Potential-Vorticity Equation: the Atmosphere 362
6.8 Quasigeostrophic Potential-Vorticity Equation for Oceanic Synoptic Scales 362
6.9 Boundary Conditions for the Potential-Vorticity Equation: the Oceans 365
6.10 Geostrophic Energy Equation and Available Potential Energy 368
6.11 Rossby Waves in a Stratified Fluid 374
6.12 Rossby-Wave Normal Modes: the Vertical Structure Equation 378
6.13 Forced Stationary Waves in the Atmosphere 385
6.14 Wave-Zonal Flow Interactions 395
6.15 Topographic Waves in a Stratified Ocean 408
6.16 Layer Models 416
6.17 Rossby Waves in the Two-Layer Model 424
6.18 The Relationship of the Layer Models to the "Level" Models 426
6.19 Geostrophic Approximation \( \varepsilon \ll L/r_0 < 1 \); the Sverdrup Relation 430
6.20 Geostrophic Approximation \( \varepsilon \ll 1, L/r_0 = O(1) \) 434
6.21 The Thermocline Problem 441
6.22 Layer Models of the Thermocline 456
6.23 Flow in Unventilated Layers: Potential Vorticity Homogenization 469
6.24 Quasigeostrophic Approximation: an Alternative Derivation 479

7 Instability Theory 490

7.1 Introduction 490
7.2 Formulation of the Instability Problem: the Continuously Stratified Model 493
7.3 The Linear Stability Problem: Conditions for Instability 499
7.4 Normal Modes 508
7.5 Bounds on the Phase Speed and Growth Rate 514
7.6 Baroclinic Instability: the Basic Mechanism 518
7.7 Eady's Model 523
7.8 Charney's Model and Critical Layers 532
7.9 Instability in the Two-Layer Model: Formulation 547
7.10 Normal Modes in the Two-Layer Model: Necessary Conditions for Instability 551
7.11 Baroclinic Instability in the Two-Layer Model: Phillips' Model 555
7.12 Effects of Friction 562
7.13 Baroclinic Instability of Nonzonal Flows 567
7.14 Barotropic Instability 574
7.15 Instability of Currents with Horizontal and Vertical Shear 582
7.16 Nonlinear Theory of Baroclinic Instability 589
7.17 Instability of Nonparallel Flow 617

8 Ageostrophic Motion 624
8.1 Anisotropic Scales 624
8.2 Continental-Shelf Waves 628
8.3 Slow Circulation of a Stratified, Dissipative Fluid 637
8.4 The Theory of Frontogenesis 653
8.5 Equatorial Waves 670

Selected Bibliography 689

Index 705