Patterns and processes of vertebrate evolution

ROBERT L. CARROLL
McGill University
Contents

Preface xi
Acknowledgments xv

1. Current problems in evolutionary theory 1
 Introduction 1
 Large-scale evolutionary phenomena 9
 Obstacles to uniting analysis of short- and long-term evolutionary processes 11
 Vertebrates as a model for the study of evolution 14

2. Theories of evolution at the level of populations and species 19
 Darwin's view of evolution at the population level 19
 Dobzhansky and Mayr and the modern understanding of the role of species in evolution 21
 The fossil record 24
 Stratigraphy 25
 Eldredge and Gould and the theory of punctuated equilibria 27

3. Evolution in modern populations 34
 Introduction 34
 Evolutionary change in immigrant populations 36
 Evolution within the Galápagos finches 38
 Significance of changes among Darwin's finches to longer-term evolutionary phenomena 50
 Other examples of evolutionary change on islands 52
 Clines 52
 Summary of evidence for significant change within species 54
 Speciation 54
 Summary 56

4. Limits to knowledge of the fossil record and their influence on studies of evolution 57
 Introduction 57
 Limitations of the fossil record 57
 Changes in the relative completeness of the fossil record over time 65
 Dating geological events and processes 68
 Rates of evolution 72
 Summary 81

vii
5. Patterns of evolution among late Cenozoic mammals

- Introduction 82
- The Plio–Pleistocene ice ages 84
- Testing punctuated equilibria 85
- Recognition of stasis 86
- Directional evolution 90
- Anagenetic origin of species 102
- Morphological change at the time of speciation 104
- Species selection 106
- Summary of evolutionary patterns among late Cenozoic mammals 110
- Rates of evolution among late Cenozoic mammals 110

6. Patterns of evolution of nonmammalian vertebrates in the late Cenozoic

- Amphibians and reptiles 115
- Birds 118
- Stickleback fish 119
- The cichlid fishes of the East African Great Lakes 123
- Explanations for the rapid evolution of cichlids 132
- Species-level evolution among the cichlids of the East African Great Lakes 137
- The cichlid radiation as a model to bridge the levels of microevolution and macroevolution 139
- Summary 144

7. The influence of systems of classification on concepts of evolutionary patterns

- Patterns and processes at the species level 145
- Linnean classification 146
- Phylogenetic systematics 150
- Monophyly and paraphyly 151
- Monophyletic groups of vertebrates 155
- Naming and defining clades and included groups 160
- The impact of phylogenetic systematics on the study of evolution 165
- Summary 166

8. Evolutionary constraints

- Introduction 167
- Historical constraints 169
- Chemical constraints 172
- Material constraints 173
- Summary 179

9. Evolutionary genetics

- Introduction 180
- Basic models of genetics 180
The shifting balance theory of evolution 190
Polygenic or quantitative inheritance 192
Analysis of quantitative traits 193
The effect of selection on quantitative traits 196
Rates of accumulation of quantitative traits 201
Nature of genes for quantitative traits 202
The enigma of low selection coefficients for long-term evolutionary change 202
Genetic constraints 208

10. Development and evolution 212
Genetics and development 212
Heterochrony 214
Homeobox genes 215
The phylotypic stage 220
Hox genes in chordates 221
The origin of craniates 222
Developmental processes and the evolution of the skull and axial skeleton 225
The evolution of fins and limbs 227
The origin of tetrapod limbs 230
Developmental processes of tetrapod limbs 236
Morphogenesis and evolution of tetrapod limbs 240
Integration of developmental biology with the evolutionary synthesis 258
Development and macroevolution 262
Summary 264

11. Physical constraints 266
Constraints on body form in fast-swimming vertebrates 266
Primitively aquatic vertebrates 268
Secondary aquatic adaptation among groups with terrestrial ancestors 274
Flight 274
Terrestrial constraints 282
Discussion 286
Transfer of substances across membranes 286
Heat absorption and transfer 289
Miniaturization 290
Summary 295

12. Major evolutionary transitions 296
Introduction 296
The origin of terrestrial vertebrates 300
The origin of birds 306
The origin of mosasaurs 324
The origin of whales 329
General features of major transitions 336
13. **Patterns of radiation** 340
 - Introduction 340
 - The Cambrian explosion 341
 - Radiations among primitively aquatic vertebrates 349
 - Paleozoic and Mesozoic tetrapods 350
 - Early Cenozoic mammals 352
 - Later Cenozoic mammals 358
 - Birds 359
 - Discussion 359

14. **Forces of evolution** 362
 - Forces of evolution evident at the level of populations and species 362
 - Additional factors of long-term evolution 365
 - Evolutionary trends 365
 - Continental drift 368
 - Mass extinctions 376
 - Summary 388

15. **Conclusions and comparisons** 389
 - General features of vertebrate evolution 389
 - Is a distinct theory of macroevolution necessary? 391
 - Agenda for the future 392
 - Comparisons 394
 - Final conclusions 403

Glossary 405
References 411
Index 439