Contents

1 Fractals and Multifractals: The Interplay of Physics and Geometry
By H. Eugene Stanley (With 30 Figures)

1.1 Introduction ... 1
1.2 Nonrandom Fractals .. 2
1.3 Random Fractals: The Unbiased Random Walk 4
1.4 The Concept of a Characteristic Length 5
1.5 Functional Equations and Fractal Dimension 6
1.6 An Archetype: Diffusion Limited Aggregation 7
1.7 DLA: Fractal Properties 11
1.8 DLA: Multifractal Properties 14
 1.8.1 General Considerations 14
 1.8.2 “Phase Transition” in 2d DLA 15
 1.8.3 The Void-Channel Model of 2d DLA Growth 16
 1.8.4 Multifractal Scaling of 3d DLA 18
1.9 Scaling Properties of the Perimeter of 2d DLA:
The “Glove” Algorithm ... 19
 1.9.1 Determination of the \(\ell\) Perimeter 19
 1.9.2 The \(\ell\) Gloves ... 20
 1.9.3 Necks and Lagoons 20
1.10 Multiscaling .. 21
1.11 The DLA Skeleton .. 25
1.12 Applications of DLA to Fluid Mechanics 25
 1.12.1 Archetype 1: The Ising Model and Its Variants 27
 1.12.2 Archetype 2: Random Percolation and Its Variants 27
 1.12.3 Archetype 3: The Laplace Equation and Its Variants 29
2 Percolation I

By Armin Bunde and Shlomo Havlin (With 24 Figures)
3 Percolation II

By Shlomo Havlin and Armin Bunde (With 20 Figures)
4 Fractal Growth

By Amnon Aharony (With 4 Figures)

4.1 Introduction ... 177
4.2 Fractals and Multifractals 179
4.3 Growth Models ... 182
 4.3.1 Eden Model .. 182
 4.3.2 Percolation .. 183
 4.3.3 Invasion Percolation 184
4.4 Laplacian Growth Model 186
 4.4.1 Diffusion Limited Aggregation 186
 4.4.2 Dielectric Breakdown Model 190
 4.4.3 Viscous Fingering 191
 4.4.4 Biological Growth Phenomena 191
4.5 Aggregation in Percolating Systems 192
 4.5.1 Computer Simulations 192
 4.5.2 Viscous Fingers Experiments 194
 4.5.3 Exact Results on Model Fractals 194
 4.5.4 Crossover to Homogeneous Behavior 195
4.6 Crossover in Dielectric Breakdown with Cutoffs 195
4.7 Is Growth Multifractal? 196
4.8 Conclusion ... 197
References ... 198

5 Fractures

By Hans J. Herrmann (With 18 Figures)

5.1 Introduction ... 201
5.2 Some Basic Notions of Elasticity and Fracture 202
 5.2.1 Phenomenological Description 202
 5.2.2 Elastic Equations of Motion 204
6 Transport Across Irregular Interfaces:
Fractal Electrodes, Membranes and Catalysts

By Bernard Sapoval (With 8 Figures)

6.1 Introduction ... 233
6.2 The Electrode Problem
and the Constant Phase Angle Conjecture 235
6.3 The Diffusion Impedance and the Measurement
of the Minkowski-Bouligand Exterior Dimension 237
6.4 The Generalized Modified Sierpinski Electrode 239
6.5 A General Formulation of Laplacian Transfer
Across Irregular Surfaces 242
6.6 Electrodes, Roots, Lungs, 250
6.7 Fractal Catalysts .. 253
6.8 Summary ... 257
References ... 258

7 Fractal Surfaces and Interfaces

By Jean-François Gouyet, Michel Rosso and Bernard Sapoval
(With 27 Figures)

7.1 Introduction ... 263
7.2 Rough Surfaces of Solids 264
8 Fractals and Experiments
By Jørgen K. Kjems (With 18 Figures)

8.1 Introduction .. 303
8.2 Growth Experiments: How to Make a Fractal 304
 8.2.1 The Generic DLA Model 304
 8.2.2 Dielectric Breakdown 305
 8.2.3 Electrodeposition 307
 8.2.4 Viscous Fingering 308
 8.2.5 Invasion Percolation 310
 8.2.6 Colloidal Aggregation 311
8.3 Structure Experiments:
 How to Determine the Fractal Dimension 315
 8.3.1 Image Analysis ... 316
 8.3.2 Scattering Experiments 317
 8.3.3 Scattering Formalism 319
8.4 Physical Properties .. 321
 8.4.1 Mechanical Properties 322
 8.4.2 Thermal Properties 330
8.5 Outlook .. 334
References .. 335
9 Cellular Automata

By Dietrich Stauffer (With 6 Figures)

9.1 Introduction ... 339
9.2 A Simple Example .. 340
9.3 The Kauffman Model .. 342
9.4 Classification of Cellular Automata 347
9.5 Recent Biologically Motivated Developments 351
9.A Appendix .. 352
9.A.1 Q2R Approximation for Ising Models 352
9.A.2 Immunologically Motivated Cellular Automata 354
9.A.3 Hydrodynamic Cellular Automata 360
References .. 363

10 Exactly Self-similar Left-sided Multifractals

By Benoit B. Mandelbrot and Carl J.G. Evertsz
with new Appendices B and C
by Rudolf H. Riedi and Benoit B. Mandelbrot (With 10 Figures)

10.1 Introduction ... 367
10.1.1 Two Distinct Meanings of Multifractality 367
10.1.2 "Anomalies" ... 369
10.2 Nonrandom Multifractals with an Infinite Base 370
10.3 Left-sided Multifractality with Exponential Decay of Smallest Probability 373
10.4 A Gradual Crossover from Restricted to Left-sided Multifractals ... 377
10.5 Pre-asymptotics .. 379
10.5.1 Sampling of Multiplicatively Generated Measures by a Random Walk 379
10.5.2 An "Effective" $f(\alpha)$ 380
10.6 Miscellaneous Remarks ... 383
10.7 Summary .. 384
10.A Details of Calculations and Further Discussions 385
10.A.1 Solution of (10.2) .. 385
10.A.2 The Case $\alpha_{\text{min}} = 0$ 387
10.C The Minkowski Measure and Its Left-sided $f(\alpha)$, by B.B. Mandelbrot ... 390