TABLE OF CONTENTS

Series Editor’s Preface ix
Preface to the English Edition xi
Preface to the Russian Edition xiii
Introduction 1

CHAPTER 1. VARIOUS FORMULATIONS OF MAXWELL’S EQUATIONS 8
1. Maxwell’s Equations in Vector Notation 8
2. Maxwell’s Equations in Silberstein-Bateman-Majorana Form 9
3. Maxwell’s Equations in Dirac Form 11
4. The Equations in Kemmer-Duffin-Petiau Form 12
5. The Equation for the Potential 15
6. Maxwell’s Equations in the Momentum Representation 17

CHAPTER 2. RELATIVISTIC INVARIANCE OF MAXWELL’S EQUATIONS 21
7. Basic Definitions 21
8. The IA of Maxwell’s Equations in a Class of First-Order Differential Operators 23
9. Invariance of the Equations of the Electromagnetic Field in Vacuum Under the Algebra $C(1, 3)\otimes H$ 25
10. Lorentz Transformations 26
11. Discrete Symmetry Transformations 29
12. IA of Different Formulations of Maxwell’s Equations 30

CHAPTER 3. REPRESENTATIONS OF THE POINCARÉ ALGEBRA 33
13. Classification of Irreducible Representations 33
14. The Explicit Form of the Lubanski-Pauli Vector 35
15. The Explicit Form of the Basis Elements of the Poincaré Algebra 39
16. Covariant Representations. Finite-Dimensional Representations of the Lorentz Group 43
17. Reduction of Solutions of Maxwell’s Equations by the Irreducible Representations of the Poincaré Group 47
CHAPTER 4. CONFORMAL INvariance of Maxwell's Equations 53
18. Manifestly Hermitian Representation of the Conformal Algebra 53
20. Transformations of the Conformal Group for \(\mathbf{E} \), \(\mathbf{H} \) and \(j \) 60
21. Integration of Representations of the Conformal Algebra Corresponding to Arbitrary Spin 63

CHAPTER 5. NonGeometric Symmetry of Maxwell's Equations 67
22. Invariance of Maxwell's Equations Under the Eight-Dimensional Lie Algebra \(A_8 \) 67
23. Another Proof of Theorem 6. The Finite Transformations of the Vectors \(\mathbf{E} \) and \(\mathbf{H} \) Generated by the Nongeometric IA 69
24. Invariance of Maxwell's Equations Under a 23-dimensional Lie Algebra 72
25. Symmetry Relative to Transformations not Changing Time 74

27. The IA of the Dirac Equation in the Class of Differential Operators 80
28. The IA of the Dirac Equation in the Class of Integro-Differential Operators 83
29. The Symmetry of the Eight-Component Dirac Equation 85
30. Symmetry of the Dirac Equation for a Massless Particle 87
31. Symmetry of the Kemmer-Duffin-Petiau Equation 89
32. Nongeometric Symmetry of the Dirac and KDP Equations for Particles Interacting with an External Field 91

CHAPTER 7. Constants of Motion 94
33. Bilinear Forms Conserved in Time 94
34. Constants of Motion for the Dirac Field 96
35. Classical Constants of Motion of the Electromagnetic Field 98
36. Constants of Motion Connected with Nongeometric Symmetry of Maxwell's Equations 102
37. Formulation of Conservation Laws Using the Equation of Continuity 106
CHAPTER 8. SYMMETRY OF SUBSYSTEMS OF MAXWELL'S EQUATION

38. Invariance of the First Pair of Maxwell's Equations Under Galilean Transformations 107
39. Invariance Under the Group IGL (4, R) 111
40. Symmetry of the Second Pair of the Maxwell's Equations and the Equation of Continuity 113
41. Symmetry Relative to Nonlinear Coordinate Transformations 116
42. Symmetry of Subsystems of Maxwell's Equations Invariant Under the Group O(3) 120
43. Nongeometric Symmetry 123
44. Symmetry of the Equations for the Potential 127

CHAPTER 9. EQUATIONS FOR THE ELECTROMAGNETIC FIELD INVARIANT UNDER THE GAILEAN GROUP

45. Two Types of Galilean-Invariant Equations for the Electromagnetic Field 131
46. Symmetry of Equations (45.1)–(45.4) and (45.7)–(45.10) 133
47. Other Types of Galilean-Invariant Equations for the Electromagnetic Field 139
48. Irreducible Representations of the Lie Algebra of the Extended Galilean Group 142

CHAPTER 10. RELATIVISTIC EQUATIONS FOR A VECTOR AND SPINOR MASSLESS FIELD

49. A Group-Theoretic Derivation of Maxwell's Equations 146
50. Uniqueness of Maxwell's Equations 149
51. Five Types of Inequivalent Equations for Massless Fields 152
52. Inequivalent Equations for a Massless Vector Field 156

CHAPTER 11. POINCARE-IN Variant EQUATIONS FOR A MASSLESS FIELD WITH ARBITRARY SPIN

53. Covariant Equations for Massless Fields with Arbitrary Helicity 161
54. Equations in Dirac Form for Fields with Arbitrary Spin 163
55. Invariant Equations Without Superfluous Components 167
56. Inequivalent Equations for a Massless Field with Arbitrary Spin 170
CONCLUSION 174

APPENDIX 1
On Complete Sets of Symmetry Operators for the Dirac and
Maxwell Equations and Invariance Algebras of Relativistic
Wave Equations for Particles of Arbitrary Spin 175

APPENDIX 2
Symmetry of Nonlinear Equations of Electrodynamics 181

APPENDIX 3
On Ansätze and Exact Solutions of the Nonlinear Dirac and
Maxwell-Dirac Equations 183

APPENDIX 4
How to Extend the Symmetry of Equations? 194

Bibliography 199

List of Additional References 209

Index 213