V.V. Prasolov

Problems and Theorems in Linear Algebra
CONTENTS

Preface xv
Main notations and conventions xvii

Chapter I. Determinants 1
Historical remarks: Leibniz and Seki Kowa, Cramer, L'Hôpital, Cauchy and Jacobi
1. Basic properties of determinants 1
Problems

2. Minors and cofactors 9
Binet-Cauchy's formula, Laplace's theorem, Jacobi's theorem on minors of the adjoint matrix,
The generalized Sylvester's identity, Chebotarev's theorem on the matrix \(\|eU\|^p \), where \(e = \exp(2\pi i/p) \).
Problems

3. The Schur complement 16
Given \(A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \), the matrix \((A|A_{11}) = A_{22} - A_{21}A_{11}^{-1}A_{12} \) is called the Schur complement (of \(A_{11} \) in \(A \)).
3.1. \(\det A = \det A_{11} \det (A|A_{11}) \).
3.2. Theorem. \((A|B) = ((A|C)|(B|C)) \).
Problems

4. Symmetric functions, sums \(x_1^k + \cdots + x_n^k \), and Bernoulli numbers 19
Determinant relations between \(\sigma_k(x_1, \ldots, x_n), s_k(x_1, \ldots, x_n) = x_1^k + \cdots + x_n^k \) and \(p_k(x_1, \ldots, x_n) = \sum_{i_1 + \cdots + i_n = n} x_1^{i_1} \cdots x_n^{i_n} \). A determinant formula for \(S_n(k) = 1^n + \cdots + (k-1)^n \). The Bernoulli numbers and \(S_n(k) \).
4.4. Theorem. Let \(u = S_1(x) \) and \(v = S_2(x) \). Then for \(k \geq 1 \) there exist polynomials \(p_k \) and \(q_k \) such that \(S_{2k+1}(x) = u^2p_k(u) \) and \(S_{2k}(x) = vq_k(u) \).
Problems

Solutions

Chapter II. Linear spaces 35
Historical remarks: Hamilton and Grassmann
5. The dual space. The orthogonal complement 37
Linear equations and their application to the following theorem:
5.4.3. **Theorem.** If a rectangle with sides \(a\) and \(b\) is arbitrarily cut into squares with sides \(x_1, \ldots, x_n\) then \(\frac{x_i}{a} \in \mathbb{Q}\) and \(\frac{x_i}{b} \in \mathbb{Q}\) for all \(i\).

Problems

6. The kernel (null space) and the image (range) of an operator. The quotient space

6.2.1. **Theorem.** \(\text{Ker } A^* = (\text{Im } A)^{\perp}\) and \(\text{Im } A^* = (\text{Ker } A)^{\perp}\).

Fredholm's alternative. Kronecker-Capelli's theorem. Criteria for solvability of the matrix equation \(C = AXB\).

Problem

7. Bases of a vector space. Linear independence

7.2. **Theorem.** Let \(x_1, \ldots, x_n\) and \(y_1, \ldots, y_n\) be two bases, \(1 \leq k \leq n\). Then \(k\) of the vectors \(y_1, \ldots, y_n\) can be interchanged with some \(k\) of the vectors \(x_1, \ldots, x_n\) so that we get again two bases.

7.3. **Theorem.** Let \(T : V \rightarrow V\) be a linear operator such that the vectors \(\xi, T\xi, \ldots, T^n\xi\) are linearly dependent for every \(\xi \in V\). Then the operators \(I, T, \ldots, T^n\) are linearly dependent.

Problems

8. The rank of a matrix

The Frobenius inequality. The Sylvester inequality.

8.3. **Theorem.** Let \(U\) be a linear subspace of the space \(M_{n,m}\) of \(n \times m\) matrices, and \(r \leq m \leq n\).

If \(\text{rank } X < r\) for any \(X \in U\) then \(\dim \ U < nr\).

A description of subspaces \(U \subset M_{n,m}\) such that \(\dim \ U = nr\).

Problems

9. Subspaces. The Gram-Schmidt orthogonalization process

Orthogonal projections.

9.5. **Theorem.** Let \(e_1, \ldots, e_n\) be an orthogonal basis for a space \(V\), \(d_i = \|e_i\|\). The projections of the vectors \(e_1, \ldots, e_n\) onto an \(m\)-dimensional subspace of \(V\) have equal lengths if and only if \(d_i^2(d_1^{-2} + \cdots + d_n^{-2}) \geq m\) for every \(i = 1, \ldots, n\).

9.6.1. **Theorem.** A set of \(k\)-dimensional subspaces of \(V\) is such that any two of these subspaces have a common \((k-1)\)-dimensional subspace. Then either all these subspaces have a common \((k-1)\)-dimensional subspace or all of them are contained in the same \((k+1)\)-dimensional subspace.

Problems

10. Complexification and realification. Unitary spaces

Unitary operators. Normal operators.

10.3.4. **Theorem.** Let \(B\) and \(C\) be Hermitian operators. Then the operator \(A = B + iC\) is normal if and only if \(BC = CB\).

Complex structures.

Problems

Solutions

Chapter III. Canonical forms of matrices and linear operators

11. The trace and eigenvalues of an operator

The eigenvalues of an Hermitian operator and of a unitary operator. The eigenvalues of a tridiagonal matrix.

Problems

12. The Jordan canonical (normal) form

12.1. **Theorem.** If \(A\) and \(B\) are matrices with real entries and \(A = PBP^{-1}\) for some matrix \(P\) with complex entries then \(A = QBQ^{-1}\) for some matrix \(Q\) with real entries.

The existence and uniqueness of the Jordan canonical form (Văliacho's simple proof).
CONTENTS

The real Jordan canonical form.

12.5.1. Theorem. a) For any operator A there exist a nilpotent operator A_n and a semisimple operator A_s such that $A = A_s + A_n$ and $A_nA_s = A_sA_n$.

b) The operators A_n and A_s are unique; besides, $A_s = S(A)$ and $A_n = N(A)$ for some polynomials S and N.

12.5.2. Theorem. For any invertible operator A there exist a unipotent operator A_u and a semisimple operator A_s such that $A = A_sA_u = A_uA_s$. Such a representation is unique.

12.6. The proof of the Kronecker theorem for points of linear maps.

Problems

13. The minimal polynomial and the characteristic polynomial

13.1.2. Theorem. For any operator A there exists a vector v such that the minimal polynomial of v (with respect to A) coincides with the minimal polynomial of A.

13.3. Theorem. The characteristic polynomial of a matrix A coincides with its minimal polynomial if and only if for any vector (x_1, \ldots, x_n) there exist a column P and a row Q such that $x_k = QA^k P$.

Hamilton-Cayley's theorem and its generalization for polynomials of matrices.

Problems

14. The Frobenius canonical form

Existence of the Frobenius canonical form (H. G. Jacob's simple proof)

Problems

15. How to reduce the diagonal to a convenient form

15.1. Theorem. If $A \neq \lambda I$ then A is similar to a matrix with the diagonal elements $(0, \ldots, 0, \text{tr } A)$.

15.2. Theorem. Any matrix A is similar to a matrix with equal diagonal elements.

15.3. Theorem. Any nonzero square matrix A is similar to a matrix all diagonal elements of which are nonzero.

Problems

16. The polar decomposition

The polar decomposition of noninvertible and of invertible matrices. The uniqueness of the polar decomposition of an invertible matrix.

16.1. Theorem. If $A = S_1U_1 = U_2S_2$ are polar decompositions of an invertible matrix A then $U_1 = U_2$.

16.2.1. Theorem. For any matrix A there exist unitary matrices U, W and a diagonal matrix D such that $A = UDW$.

Problems

17. Factorizations of matrices

17.1. Theorem. For any complex matrix A there exist a unitary matrix U and a triangular matrix T such that $A = UTU^*$. The matrix A is a normal one if and only if T is a diagonal one.

Gauss, Gram, and Lanczos factorizations.

17.3. Theorem. Any matrix is a product of two symmetric matrices.

Problems

18. The Smith normal form. Elementary factors of matrices

Problems

Solutions

Chapter IV. Matrices of special form

19. Symmetric and Hermitian matrices

19.5.1. Theorem. If $A \geq 0$ and $(Ax, x) = 0$ for any x, then $A = 0$.

Problems
20. Simultaneous diagonalization of a pair of Hermitian forms

Simultaneous diagonalization of two Hermitian matrices A and B when $A > 0$. An example of two Hermitian matrices which can not be simultaneously diagonalized. Simultaneous diagonalization of two semidefinite matrices. Simultaneous diagonalization of two Hermitian matrices A and B such that there is no $x \neq 0$ for which $x^*Ax = x^*Bx = 0$.

Problems

21. Skew-symmetric matrices

21.1. Theorem. If A is a skew-symmetric matrix then $A^2 \leq 0$.

21.2. Theorem. If A is a real matrix such that $(Ax, x) = 0$ for all x, then A is a skew-symmetric matrix.

21.2. Theorem. Any skew-symmetric bilinear form can be expressed as

$$
\sum_{k=1}^{r} (x_{2k-1}y_{2k} - x_{2k}y_{2k-1}).
$$

Problems

22. Orthogonal matrices. The Cayley transformation

The standard Cayley transformation of an orthogonal matrix which does not have 1 as its eigenvalue. The generalized Cayley transformation of an orthogonal matrix which has 1 as its eigenvalue.

Problems

23. Normal matrices

23.1. Theorem. If an operator A is normal then $\text{Ker} \ A^* = \text{Ker} \ A$ and $\text{Im} \ A^* = \text{Im} \ A$.

23.1.2. Theorem. An operator A is normal if and only if any eigenvector of A is an eigenvector of A^*.

23.2. Theorem. If an operator A is normal then there exists a polynomial P such that $A^* = P(A)$.

Problems

24. Nilpotent matrices

24.2.1. Theorem. Let A be an $n \times n$ matrix. The matrix A is nilpotent if and only if $\text{tr}(A^p) = 0$ for each $p = 1, \ldots, n$.

Nilpotent matrices and Young tableaux.

Problems

25. Projections. Idempotent matrices

25.2.1&2. Theorem. An idempotent operator P is an Hermitian one if and only if a) $\text{Ker} \ P \perp \text{Im} \ P$; or b) $|Px| \leq |x|$ for every x.

25.2.3. Theorem. Let P_1, \ldots, P_n be Hermitian, idempotent operators. The operator $P = P_1 + \cdots + P_n$ is an idempotent one if and only if $P_iP_j = 0$ whenever $i \neq j$.

25.4.1. Theorem. Let $V_1 \oplus \cdots \oplus V_k, P_i : V \rightarrow V_i$ be Hermitian idempotent operators, $A = P_1 + \cdots + P_k$. Then $0 < \det A \leq 1$ and $\det A = 1$ if and only if $V_i \perp V_j$ whenever $i \neq j$.

Problems

26. Involution

26.2. Theorem. A matrix A can be represented as the product of two involutions if and only if the matrices A and A^{-1} are similar.

Problems

Solutions

Chapter V. Multilinear algebra

27. Multilinear maps and tensor products
An invariant definition of the trace. Kronecker’s product of matrices, \(A \otimes B \); the eigenvalues of the matrices \(A \otimes B \) and \(A \otimes I + I \otimes B \). Matrix equations \(AX - XB = C \) and \(AX - XB = \lambda X \).

Problems

28. Symmetric and skew-symmetric tensors

28.5.4. Theorem. Let \(\Lambda_B(t) = 1 + \sum_{q=1}^{n} \text{tr}(A_B^q)t^q \) and \(S_B(t) = 1 + \sum_{q=1}^{n} \text{tr}(S_B^q)t^q \). Then \(S_B(t) = (\Lambda_B(-1))^{-1} \).

Problems

29. The Pfaffian

The Pfaffian of principal submatrices of the matrix \(M = ||m_{ij}||_{1}^{2n} \), where \(m_{ij} = (-1)^{i+j+1} \).

29.2.2. Theorem. Given a skew-symmetric matrix \(A \) we have

\[
\text{Pf}(A + \lambda^2 M) = \sum_{k=0}^{n} \lambda^{2k} p_k, \quad \text{where} \quad p_k = \sum_{\sigma} A \left(\begin{array}{ccc} \sigma_1 & \cdots & \sigma_{2(n-k)} \\ \sigma_1 & \cdots & \sigma_{2(n-k)} \end{array} \right).
\]

Problems

30. Decomposable skew-symmetric and symmetric tensors

30.2.1. Theorem. \(x_1 \wedge \cdots \wedge x_k = y_1 \wedge \cdots \wedge y_k \neq 0 \) if and only if \(\text{Span}(x_1, \ldots, x_k) = \text{Span}(y_1, \ldots, y_k) \).

30.2.2. Theorem. \(S(x_1 \otimes \cdots \otimes x_k) = S(y_1 \otimes \cdots \otimes y_k) \neq 0 \) if and only if \(\text{Span}(x_1, \ldots, x_k) = \text{Span}(y_1, \ldots, y_k) \).

Plucker relations.

Problems

31. The tensor rank

Strassen’s algorithm. The set of all tensors of rank \(\leq 2 \) is not closed. The rank over \(\mathbb{R} \) is not equal, generally, to the rank over \(\mathbb{C} \).

Problems

32. Linear transformations of tensor products

A complete description of the following types of transformations of

\[V^m \otimes (V^*)^n \cong M_{m,n} : \]

1) rank-preserving;
2) determinant-preserving;
3) eigenvalue-preserving;
4) invertibility-preserving.

Problems

Solutions

Chapter VI. Matrix inequalities

33. Inequalities for symmetric and Hermitian matrices

33.1.1. Theorem. If \(A > B > 0 \) then \(A^{-1} < B^{-1} \).

33.1.3. Theorem. If \(A > 0 \) is a real matrix then

\[
(A^{-1}x, x) = \max_{y}(2(x, y) - (Ay, y)).
\]
33.2.1. **Theorem.** Suppose $A = \begin{pmatrix} A_1 & B \\ B^* & A_2 \end{pmatrix} > 0$. Then $|A| \leq |A_1| \cdot |A_2|$.
Hadamard's inequality and Szasz's inequality.

33.3.1. **Theorem.** Suppose $\alpha_i > 0$, $\sum_{i=1}^{n} \alpha_i = 1$ and $A_i > 0$. Then

$$|\alpha_1 A_1 + \cdots + \alpha_k A_k| \geq |A_1|^{\alpha_1} + \cdots + |A_k|^{\alpha_k}.$$

33.3.2. **Theorem.** Suppose $A_i > 0$, $\alpha_i \in \mathbb{C}$. Then

$$|\det(\alpha_1 A_1 + \cdots + \alpha_k A_k)| \leq \det(|\alpha_1 A_1 + \cdots + \alpha_k A_k|).$$

Problems

34. **Inequalities for eigenvalues**

Schur's inequality, Weyl's inequality (for eigenvalues of $A + B$).

34.2.2. **Theorem.** Let $A = \begin{pmatrix} B & C \\ C^* & B \end{pmatrix} > 0$ be an Hermitian matrix, $\alpha_1 \leq \cdots \leq \alpha_n$ and $\beta_1 \leq \cdots \leq \beta_m$ the eigenvalues of A and B, respectively. Then $\alpha_i \leq \beta_i \leq \alpha_{n+1-m}$.

34.3. **Theorem.** Let A and B be Hermitian idempotents, λ any eigenvalue of AB. Then $0 \leq \lambda \leq 1$.

34.4.1. **Theorem.** Let the λ_i and μ_i be the eigenvalues of A and AA^*, respectively; let $\sigma_i = \sqrt{\mu_i}$. Let $|\lambda_1| \leq \cdots \leq |\lambda_n|$, where n is the order of A. Then $|\lambda_1 \cdots \lambda_m| \leq \sigma_1 \cdots \sigma_m$.

34.4.2. **Theorem.** Let $\sigma_1 \geq \cdots \geq \sigma_n$ and $\tau_1 \geq \cdots \geq \tau_n$ be the singular values of A and B. Then $|\text{tr}(AB)| \leq \sum \sigma_i \tau_i$.

Problems

35. **Inequalities for matrix norms**

The spectral norm $\|A\|_p$ and the Euclidean norm $\|A\|_e$, the spectral radius $\rho(A)$.

35.1.2. **Theorem.** If a matrix A is normal then $\rho(A) = \|A\|_2$.

35.2. **Theorem.** $\|A\|_e \leq \|A\|_e \leq \sqrt{n} \|A\|_p$.

The invariance of the matrix norm and singular values.

35.3.1. **Theorem.** Let S be an Hermitian matrix. Then $\|A - \frac{A + A^*}{2}\|_e$ does not exceed $\|A - S\|_e$, where $\|\|$ is the Euclidean or operator norm.

35.3.2. **Theorem.** Let $A = US$ be the polar decomposition of A and W a unitary matrix. Then $\|A - U\|_e \leq \|A - W\|_e$ and if $|A| \neq 0$, then the equality is only attained for $W = U$.

Problems

36. **Schur’s complement and Hadamard’s product. Theorems of Emily Haynsworth**

36.1.1. **Theorem.** If $A > 0$ then $(A|A_{11}) > 0$.

36.1.4. **Theorem.** If A_k and B_k are the kth principal submatrices of positive definite order m matrices A and B, then

$$|A + B| \geq |A| \left(1 + \sum_{k=1}^{n-1} \frac{|B_k|}{|A_k|}\right) + |B| \left(1 + \sum_{k=1}^{n-1} \frac{|A_k|}{|B_k|}\right).$$

Hadamard's product $A \circ B$.

36.2.1. **Theorem.** If $A > 0$ and $B > 0$ then $A \circ B > 0$.

Oppenheim's inequality.

Problems

37. **Nonnegative matrices**

Wielandt's theorem

Problems
38. Doubly stochastic matrices

Birkhoff's theorem. H. Weyl's inequality.

Solutions

Chapter VII. Matrices in algebra and calculus

39. Commuting matrices

The space of solutions of the equation $AX = XA$ with the given A of order n.

39.2. Theorem. Any set of commuting diagonalizable operators has a common eigenbasis.

39.3. Theorem. Let A, B be matrices such that $AX = XA$ implies $BX = XB$. Then $B = g(A)$, where g is a polynomial.

Problems

40. Commutators

40.2. Theorem. If $tr A = 0$ then there exist matrices X and Y such that $[X, Y] = A$ and either (1) $tr Y = 0$ and an Hermitian matrix X or (2) X and Y have prescribed eigenvalues.

40.3. Theorem. Let A, B be matrices such that $ad^s_X A = 0$ implies $ad^s_Y B = 0$ for some $s > 0$. Then $B = g(A)$ for a polynomial g.

40.4. Theorem. Matrices A_1, \ldots, A_n can be simultaneously triangularized over C if and only if the matrix $p(A_1, \ldots, A_n)[A_1, A_2]$ is a nilpotent one for any polynomial $p(x_1, \ldots, x_n)$ in noncommuting indeterminates.

40.5. Theorem. If $r n k A, B \leq 1$, then A and B can be simultaneously triangularized over C.

Problems

41. Quaternions and Cayley numbers. Clifford algebras

Isomorphisms $so(3, R) \cong su(2)$ and $so(4, R) \cong so(3, R) \oplus so(3, R)$. The vector products in K^3 and K^7. Hurwitz-Radon families of matrices. Hurwitz-Radon number $\rho(2^{t+2d}(2a + 1)) = 2^t + 8d$.

41.7. Theorem. The identity of the form

$$\left(x_1^2 + \cdots + x_m^2 \right) \left(y_1^2 + \cdots + y_m^2 \right) = \left(z_1^2 + \cdots + z_m^2 \right),$$

where $z_i(x, y)$ is a bilinear function, holds if and only if $m \leq \rho(n)$.

41.7.5. Theorem. In the space of real $n \times n$ matrices, a subspace of invertible matrices of dimension m exists if and only if $m \leq \rho(n)$.

Other applications: algebras with norm, vector product, linear vector fields on spheres. Clifford algebras and Clifford modules.

Problems

42. Representations of matrix algebras

Complete reducibility of finite-dimensional representations of $Mat(V^n)$.

Problems

43. The resultant

Sylvester's matrix, Bezout's matrix and Barnett's matrix

Problems

44. The general inverse matrix. Matrix equations

44.3. Theorem. a) The equation $AX = XA = C$ is solvable if and only if the matrices

$$\begin{pmatrix} A & O \\ O & B \end{pmatrix}$$

and

$$\begin{pmatrix} A & C \\ O & B \end{pmatrix}$$

are similar.

b) The equation $AX = YA = C$ is solvable if and only if $rank\begin{pmatrix} A & O \\ O & B \end{pmatrix} = rank\begin{pmatrix} A & C \\ O & B \end{pmatrix}$.

Problems

45. Hankel matrices and rational functions
46. Functions of matrices. Differentiation of matrices

 Differential equation $\dot{X} = AX$ and the Jacobi formula for det A.

Problems

47. Lax pairs and integrable systems

48. Matrices with prescribed eigenvalues

 48.1.2. Theorem. For any polynomial $f(x) = x^n + c_1 x^{n-1} + \ldots + c_n$ and any matrix B of order $n-1$ whose characteristic and minimal polynomials coincide there exists a matrix A such that B is a submatrix of A and the characteristic polynomial of A is equal to f.

 48.2. Theorem. Given all offdiagonal elements in a complex matrix A it is possible to select diagonal elements x_1, \ldots, x_n so that the eigenvalues of A are given complex numbers; there are finitely many sets $\{x_1, \ldots, x_n\}$ satisfying this condition.

Solutions

Appendix

Eisenstein's criterion, Hilbert's Nullstellensatz.

Bibliography

Subject Index