Contents

Preface xv
Notation xvii

I Some Linear Algebra 1

1 Linear Systems
 1.1 Matrix Notation 3
 1.2 Matrix Multiplication 5
 1.3 Gaussian Elimination 6
 1.4 Gauss-Jordan Algorithm 7
 1.5 LU-Factorization 9
 1.6 Cramer’s Rule 10
 1.7 Notes and Problems 11

2 Linear Spaces
 2.1 Basis and Dimension 13
 2.2 Change of Bases 14
 2.3 Linear Maps 16
 2.4 Kernel and Fibers 17
 2.5 Point Spaces 18
 2.6 Notes and Problems 20

3 Least Squares
 3.1 Overdetermined Systems 21
 3.2 Homogeneous Systems 23
 3.3 Constrained Least Squares 24
 3.4 Linearization 25
3.5 Underdetermined Systems 26
3.6 Notes and Problems 27

II Images and Projections 29

4 Parallel Projections
4.1 Pohlke’s Theorem 31
4.2 Orthogonal Projections 35
4.3 Computing a Parallel Projection 37
4.4 Projecting Rays 39
4.5 Notes and Problems 39

5 Moving the Object
5.1 Euclidean Motions 41
5.2 Composite Motions 43
5.3 Euler Angles 45
5.4 Coordinate Extension 46
5.5 Notes and Problems 47

6 Perspective Drawings
6.1 Homogeneous Coordinates 48
6.2 Central Projection 49
6.3 Moving the Object 51
6.4 Vanishing Points 52
6.5 Completing a Perspective Drawing 54
6.6 Moving the Camera 55
6.7 Spatial Perspective Maps 56
6.8 Notes and Problems 57

7 The Mapping Matrix
7.1 Main Theorem 59
7.2 Camera Data 61
7.3 The Spatial Perspective 62
7.4 Vanishing Points of the System 62
7.5 Stereo Pairs 67
7.6 Notes and Problems 68
8 Reconstruction
8.1 Knowing the Object 71
8.2 Straight Lines in the Image Plane 72
8.3 Several Images 73
8.4 Camera Calibration 75
8.5 Notes and Problems 76

III Affine Geometry 77

9 Affine Space
9.1 Affine Coordinates 79
9.2 Affine Subspaces 80
9.3 Hyperplanes 82
9.4 Intersection 83
9.5 Parallel Bundles 84
9.6 Notes and Problems 85

10 The Barycentric Calculus
10.1 Barycentric Coordinates 86
10.2 Subspaces 88
10.3 Affine Independence 89
10.4 Hyperplanes 91
10.5 Join 92
10.6 Volumes 93
10.7 A Generalization of Barycentric Coordinates 95
10.8 Notes and Problems 96

11 Affine Maps
11.1 Barycentric Representation 99
11.2 Affine Representation 101
11.3 Parallelism and Ratio 102
11.4 Fibers 102
11.5 Affinities 104
11.6 Correspondence of Hyperplanes 104
11.7 Notes and Problems 105
12 Affine Figures
 12.1 Triangles 107
 12.2 Quadrangles 109
 12.3 Polygons and Curves 110
 12.4 Conic Sections 112
 12.5 Axial Affinities 114
 12.6 Dilatation 117
 12.7 Notes and Problems 118

13 Quadrics in Affine Spaces
 13.1 The Equation of a Quadric 120
 13.2 Midpoints 122
 13.3 Singular Points 124
 13.4 Tangents 125
 13.5 Tangent Planes 126
 13.6 Polar Planes 127
 13.7 Notes and Problems 129

14 More on Affine Quadrics
 14.1 Diametric Planes 131
 14.2 Conjugate Directions 133
 14.3 Special Affine Coordinates 134
 14.4 Affine Normal Forms 136
 14.5 The Types of Quadrics in the Plane 138
 14.6 The Types of Quadrics in Space 139
 14.7 Notes and Problems 141

15 Homothetic Pencils
 15.1 The Equation 143
 15.2 Asymptotic Cones 144
 15.3 Homothetic Paraboloids 145
 15.4 Intersection with a Subspace 146
 15.5 Parallel Intersections 148
 15.6 Notes and Problems 150
IV Euclidean Geometry

16 The Euclidean Space
16.1 The Distance of Points 155
16.2 The Dot Product 156
16.3 Gram-Schmidt Orthogonalization 158
16.4 Cartesian Coordinates 159
16.5 The Alternating Product 160
16.6 Euclidean Motions 161
16.7 Shortest Distances 162
16.8 The Steiner Surface in Euclidean Space 163
16.9 Notes and Problems 166

17 Some Euclidean Figures
17.1 The Orthocenter 168
17.2 The Incircle 169
17.3 The Circumcircle 170
17.4 Power of a Point 172
17.5 Radical Center 173
17.6 Orthogonal Spheres 174
17.7 Centers of Similitude 175
17.8 Notes and Problems 177

18 Quadrics in Euclidean Space
18.1 Normals 179
18.2 Principal Axes 180
18.3 Real and Symmetric Matrices 181
18.4 Principal Axis Transformation 182
18.5 Normal Forms of Euclidean Quadrics 183
18.6 Notes and Problems 186

19 Focal Properties
19.1 The Ellipse 188
19.2 The Hyperbola 190
19.3 The Parabola 192
19.4 Confocal Conic Sections 193
19.5 Focal Conics 195
19.6 Focal Distances 198
V Some Projective Geometry

20 The Projective Space
 20.1 Homogeneous Coordinates
 20.2 Projective Coordinates
 20.3 The Equations of Planes and Subspaces
 20.4 The Equation of a Point
 20.5 Pencils and Bundles
 20.6 Duality
 20.7 Notes and Problems

21 Projective Maps
 21.1 Matrix Notation
 21.2 Exceptional Spaces
 21.3 The Dual Map
 21.4 Collineations and Correlations
 21.5 The Crossratio
 21.6 Harmonic Position
 21.7 Notes and Problems

22 Some Projective Figures
 22.1 Complete Quadruples in the Plane
 22.2 Desargues' Configuration
 22.3 Pappus' Configuration
 22.4 Conic Sections
 22.5 Pascal's Theorem
 22.6 Brianchon's Theorem
 22.7 Rational Bézier Curves
 22.8 Rational Bézier surfaces
 22.9 Notes and Problems

23 Projective Quadrics
 23.1 Projective Quadrics
 23.2 Tangent Planes
23.3 The Role of the Ideal Plane 250
23.4 Harmonic Points and Polarity 252
23.5 Pencils of Quadrics 253
23.6 Ranges of Quadrics 255
23.7 The Imaginary in Projective Geometry 257
23.8 The Steiner Surface 260
23.9 Notes and Problems 262

VI Some Descriptive Geometry 265

24 Associated Projections
24.1 Plan and Elevation 267
24.2 Side Elevation 269
24.3 Special Side Elevations 271
24.4 Cross Elevation 273
24.5 Curves on Surfaces 276
24.6 Canal Surface 278
24.7 The Four-Dimensional Space 280
24.8 Notes and Problems 282

25 Penetrations
25.1 Intersections 284
25.2 Distinguished Points 286
25.3 Double Points 287
25.4 The Order 289
25.5 Bezout's Theorem 291
25.6 Decompositions 292
25.7 Projections 294
25.8 Notes and Problems 295

VII Basic Algebraic Geometry 297

26 Implicit Curves and Surfaces
26.1 Plane Algebraic Curves 299
26.2 Multiple Points 300
VIII Differential Geometry 351

30 Curves
 30.1 Parametric Curves and Arc Length 353
 30.2 The Frenet Frame 354
 30.3 Moving the Frame 356
 30.4 The Spherical Image 357
 30.5 Osculating Plane and Sphere 358
 30.6 Osculating Curves 361
 30.7 Notes and Problems 362

31 Curves on Surfaces
 31.1 Parametric Surfaces and Arc Element 366
 31.2 The Local Frame 369
 31.3 The Curvature of a Curve 370
 31.4 Meusnier's Theorem 371
 31.5 The Darboux Frame 373
 31.6 Notes and Problems 374

32 Surfaces
 32.1 Dupin's Indicatrix and Euler's Theorem 376
 32.2 Gaussian Curvature and Mean Curvature 379
 32.3 Conjugate Directions and Asymptotic Lines 381
 32.4 Ruled Surfaces and Developables 382
 32.5 Contact of Order r 385
 32.6 Notes and Problems 386

Bibliography 389

Index 395