Contents

Preface to second edition
Preface to first edition

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Basic concepts of thermodynamics</td>
<td>1</td>
</tr>
<tr>
<td>1.1</td>
<td>External state variables</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>Internal state variables</td>
<td>3</td>
</tr>
<tr>
<td>1.3</td>
<td>The first law of thermodynamics</td>
<td>5</td>
</tr>
<tr>
<td>1.4</td>
<td>Freezing-in conditions</td>
<td>9</td>
</tr>
<tr>
<td>1.5</td>
<td>Reversible and irreversible processes</td>
<td>10</td>
</tr>
<tr>
<td>1.6</td>
<td>Second law of thermodynamics</td>
<td>13</td>
</tr>
<tr>
<td>1.7</td>
<td>Condition of internal equilibrium</td>
<td>17</td>
</tr>
<tr>
<td>1.8</td>
<td>Driving force</td>
<td>19</td>
</tr>
<tr>
<td>1.9</td>
<td>Combined first and second law</td>
<td>21</td>
</tr>
<tr>
<td>1.10</td>
<td>General conditions of equilibrium</td>
<td>23</td>
</tr>
<tr>
<td>1.11</td>
<td>Characteristic state functions</td>
<td>24</td>
</tr>
<tr>
<td>1.12</td>
<td>Entropy</td>
<td>26</td>
</tr>
<tr>
<td>2</td>
<td>Manipulation of thermodynamic quantities</td>
<td>30</td>
</tr>
<tr>
<td>2.1</td>
<td>Evaluation of one characteristic state function from another</td>
<td>30</td>
</tr>
<tr>
<td>2.2</td>
<td>Internal variables at equilibrium</td>
<td>31</td>
</tr>
<tr>
<td>2.3</td>
<td>Equations of state</td>
<td>33</td>
</tr>
<tr>
<td>2.4</td>
<td>Experimental conditions</td>
<td>34</td>
</tr>
<tr>
<td>2.5</td>
<td>Notation for partial derivatives</td>
<td>37</td>
</tr>
<tr>
<td>2.6</td>
<td>Use of various derivatives</td>
<td>38</td>
</tr>
<tr>
<td>2.7</td>
<td>Comparison between C_V and C_P</td>
<td>40</td>
</tr>
<tr>
<td>2.8</td>
<td>Change of independent variables</td>
<td>41</td>
</tr>
<tr>
<td>2.9</td>
<td>Maxwell relations</td>
<td>43</td>
</tr>
<tr>
<td>3</td>
<td>Systems with variable composition</td>
<td>45</td>
</tr>
<tr>
<td>3.1</td>
<td>Chemical potential</td>
<td>45</td>
</tr>
<tr>
<td>3.2</td>
<td>Molar and integral quantities</td>
<td>46</td>
</tr>
<tr>
<td>3.3</td>
<td>More about characteristic state functions</td>
<td>48</td>
</tr>
</tbody>
</table>
Contents

3.4 Additivity of extensive quantities. Free energy and exergy 51
3.5 Various forms of the combined law 52
3.6 Calculation of equilibrium 54
3.7 Evaluation of the driving force 56
3.8 Driving force for molecular reactions 58
3.9 Evaluation of integrated driving force as function of
 T or P 59
3.10 Effective driving force 60

4 Practical handling of multicomponent systems 63

4.1 Partial quantities 63
4.2 Relations for partial quantities 65
4.3 Alternative variables for composition 67
4.4 The lever rule 70
4.5 The tie-line rule 71
4.6 Different sets of components 74
4.7 Constitution and constituents 75
4.8 Chemical potentials in a phase with sublattices 77

5 Thermodynamics of processes 80

5.1 Thermodynamic treatment of kinetics of
 internal processes 80
5.2 Transformation of the set of processes 83
5.3 Alternative methods of transformation 85
5.4 Basic thermodynamic considerations for processes 89
5.5 Homogeneous chemical reactions 92
5.6 Transport processes in discontinuous systems 95
5.7 Transport processes in continuous systems 98
5.8 Substitutional diffusion 101
5.9 Onsager's extremum principle 104

6 Stability 108

6.1 Introduction 108
6.2 Some necessary conditions of stability 110
6.3 Sufficient conditions of stability 113
6.4 Summary of stability conditions 115
6.5 Limit of stability 116
6.6 Limit of stability against fluctuations in composition
 chemical capacitance 117
6.7 Chemical capacitance 120
6.8 Limit of stability against fluctuations of
 internal variables 121
6.9 Le Chatelier's principle 123
7 Applications of molar Gibbs energy diagrams

7.1 Molar Gibbs energy diagrams for binary systems
7.2 Instability of binary solutions
7.3 Illustration of the Gibbs–Duhem relation
7.4 Two-phase equilibria in binary systems
7.5 Allotropic phase boundaries
7.6 Effect of a pressure difference on a two-phase equilibrium
7.7 Driving force for the formation of a new phase
7.8 Partitionless transformation under local equilibrium
7.9 Activation energy for a fluctuation
7.10 Ternary systems
7.11 Solubility product

8 Phase equilibria and potential phase diagrams

8.1 Gibbs’ phase rule
8.2 Fundamental property diagram
8.3 Topology of potential phase diagrams
8.4 Potential phase diagrams in binary and multinary systems
8.5 Sections of potential phase diagrams
8.6 Binary systems
8.7 Ternary systems
8.8 Direction of phase fields in potential phase diagrams
8.9 Extremum in temperature and pressure

9 Molar phase diagrams

9.1 Molar axes
9.2 Sets of conjugate pairs containing molar variables
9.3 Phase boundaries
9.4 Sections of molar phase diagrams
9.5 Schreinemakers’ rule
9.6 Topology of sectioned molar diagrams

10 Projected and mixed phase diagrams

10.1 Schreinemakers’ projection of potential phase diagrams
10.2 The phase field rule and projected diagrams
10.3 Relation between molar diagrams and Schreinemakers’ projected diagrams
10.4 Coincidence of projected surfaces
10.5 Projection of higher-order invariant equilibria
10.6 The phase field rule and mixed diagrams
10.7 Selection of axes in mixed diagrams
10.8 Konovalov's rule
10.9 General rule for singular equilibria

11 Direction of phase boundaries
11.1 Use of distribution coefficient
11.2 Calculation of allotropic phase boundaries
11.3 Variation of a chemical potential in a two-phase field
11.4 Direction of phase boundaries
11.5 Congruent melting points
11.6 Vertical phase boundaries
11.7 Slope of phase boundaries in isothermal sections
11.8 The effect of a pressure difference between two phases

12 Sharp and gradual phase transformations
12.1 Experimental conditions
12.2 Characterization of phase transformations
12.3 Microstructural character
12.4 Phase transformations in alloys
12.5 Classification of sharp phase transformations
12.6 Applications of Schreinemakers’ projection
12.7 Scheil’s reaction diagram
12.8 Gradual phase transformations at fixed composition
12.9 Phase transformations controlled by a chemical potential

13 Transformations in closed systems
13.1 The phase field rule at constant composition
13.2 Reaction coefficients in sharp transformations for \(p = c + 1 \)
13.3 Graphical evaluation of reaction coefficients
13.4 Reaction coefficients in gradual transformations for \(p = c \)
13.5 Driving force for sharp phase transformations
13.6 Driving force under constant chemical potential
13.7 Reaction coefficients at constant chemical potential
13.8 Compositional degeneracies for \(p = c \)
13.9 Effect of two compositional degeneracies for \(p = c - 1 \)

14 Partitionless transformations
14.1 Deviation from local equilibrium
14.2 Adiabatic phase transformation
14.3 Quasi-adiabatic phase transformation
14.4 Partitionless transformations in binary system
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.5</td>
<td>Partial chemical equilibrium</td>
<td>311</td>
</tr>
<tr>
<td>14.6</td>
<td>Transformations in steel under quasi-paraequilibrium</td>
<td>315</td>
</tr>
<tr>
<td>14.7</td>
<td>Transformations in steel under partitioning of alloying elements</td>
<td>319</td>
</tr>
<tr>
<td>15</td>
<td>Limit of stability and critical phenomena</td>
<td>322</td>
</tr>
<tr>
<td>15.1</td>
<td>Transformations and transitions</td>
<td>322</td>
</tr>
<tr>
<td>15.2</td>
<td>Order–disorder transitions</td>
<td>325</td>
</tr>
<tr>
<td>15.3</td>
<td>Miscibility gaps</td>
<td>330</td>
</tr>
<tr>
<td>15.4</td>
<td>Spinodal decomposition</td>
<td>334</td>
</tr>
<tr>
<td>15.5</td>
<td>Tri-critical points</td>
<td>338</td>
</tr>
<tr>
<td>16</td>
<td>Interfaces</td>
<td>344</td>
</tr>
<tr>
<td>16.1</td>
<td>Surface energy and surface stress</td>
<td>344</td>
</tr>
<tr>
<td>16.2</td>
<td>Phase equilibrium at curved interfaces</td>
<td>345</td>
</tr>
<tr>
<td>16.3</td>
<td>Phase equilibrium at fluid/fluid interfaces</td>
<td>346</td>
</tr>
<tr>
<td>16.4</td>
<td>Size stability for spherical inclusions</td>
<td>350</td>
</tr>
<tr>
<td>16.5</td>
<td>Nucleation</td>
<td>351</td>
</tr>
<tr>
<td>16.6</td>
<td>Phase equilibrium at crystal/fluid interface</td>
<td>353</td>
</tr>
<tr>
<td>16.7</td>
<td>Equilibrium at curved interfaces with regard to composition</td>
<td>356</td>
</tr>
<tr>
<td>16.8</td>
<td>Equilibrium for crystalline inclusions with regard to composition</td>
<td>359</td>
</tr>
<tr>
<td>16.9</td>
<td>Surface segregation</td>
<td>361</td>
</tr>
<tr>
<td>16.10</td>
<td>Coherency within a phase</td>
<td>363</td>
</tr>
<tr>
<td>16.11</td>
<td>Coherency between two phases</td>
<td>366</td>
</tr>
<tr>
<td>16.12</td>
<td>Solute drag</td>
<td>371</td>
</tr>
<tr>
<td>17</td>
<td>Kinetics of transport processes</td>
<td>377</td>
</tr>
<tr>
<td>17.1</td>
<td>Thermal activation</td>
<td>377</td>
</tr>
<tr>
<td>17.2</td>
<td>Diffusion coefficients</td>
<td>381</td>
</tr>
<tr>
<td>17.3</td>
<td>Stationary states for transport processes</td>
<td>384</td>
</tr>
<tr>
<td>17.4</td>
<td>Local volume change</td>
<td>388</td>
</tr>
<tr>
<td>17.5</td>
<td>Composition of material crossing an interface</td>
<td>390</td>
</tr>
<tr>
<td>17.6</td>
<td>Mechanisms of interface migration</td>
<td>391</td>
</tr>
<tr>
<td>17.7</td>
<td>Balance of forces and dissipation</td>
<td>396</td>
</tr>
<tr>
<td>18</td>
<td>Methods of modelling</td>
<td>400</td>
</tr>
<tr>
<td>18.1</td>
<td>General principles</td>
<td>400</td>
</tr>
<tr>
<td>18.2</td>
<td>Choice of characteristic state function</td>
<td>401</td>
</tr>
<tr>
<td>18.3</td>
<td>Reference states</td>
<td>402</td>
</tr>
<tr>
<td>18.4</td>
<td>Representation of Gibbs energy of formation</td>
<td>405</td>
</tr>
<tr>
<td>18.5</td>
<td>Use of power series in T</td>
<td>407</td>
</tr>
<tr>
<td>18.6</td>
<td>Representation of pressure dependence</td>
<td>408</td>
</tr>
<tr>
<td>18.7</td>
<td>Application of physical models</td>
<td>410</td>
</tr>
</tbody>
</table>
Contents

18.8 Ideal gas
18.9 Real gases
18.10 Mixtures of gas species
18.11 Black-body radiation
18.12 Electron gas

19 Modelling of disorder

19.1 Introduction
19.2 Thermal vacancies in a crystal
19.3 Topological disorder
19.4 Heat capacity due to thermal vibrations
19.5 Magnetic contribution to thermodynamic properties
19.6 A simple physical model for the magnetic contribution
19.7 Random mixture of atoms
19.8 Restricted random mixture
19.9 Crystals with stoichiometric vacancies
19.10 Interstitial solutions

20 Mathematical modelling of solution phases

20.1 Ideal solution
20.2 Mixing quantities
20.3 Excess quantities
20.4 Empirical approach to substitutional solutions
20.5 Real solutions
20.6 Applications of the Gibbs–Duhem relation
20.7 Dilute solution approximations
20.8 Predictions for solutions in higher-order systems
20.9 Numerical methods of predictions for higher-order systems

21 Solution phases with sublattices

21.1 Sublattice solution phases
21.2 Interstitial solutions
21.3 Reciprocal solution phases
21.4 Combination of interstitial and substitutional solution
21.5 Phases with variable order
21.6 Ionic solid solutions

22 Physical solution models

22.1 Concept of nearest-neighbour bond energies
22.2 Random mixing model for a substitutional solution
22.3 Deviation from random distribution
22.4 Short-range order
22.5 Long-range order 484
22.6 Long- and short-range order 486
22.7 The compound energy formalism with short-range order 488
22.8 Interstitial ordering 490
22.9 Composition dependence of physical effects 493

References 496
Index 499