The Mathematics of

Egypt, Mesopotamia, China, India, and Islam

A Sourcebook

Victor Katz, Editor

Annette Imhausen
Eleanor Robson
Joseph Dauben
Kim Plofker
J. Lennart Berggren
Contents

Preface ix
Permissions xi
Introduction 1

Chapter 1
Egyptian Mathematics
Annette Imhausen

Preliminary Remarks 7
I. Introduction 9
 a. Invention of writing and number systems 13
 b. Arithmetic 14
 c. Metrology 17

II. Hieratic Mathematical Texts 17
 a. Table texts 18
 b. Problem texts 24

III. Mathematics in Administrative Texts 40
 a. Middle Kingdom texts: The Reisner papyri 40
 b. New Kingdom texts: Ostraca from Deir el Medina 44

IV. Mathematics in the Graeco-Roman Period 46
 a. Context 46
 b. Table texts 47
 c. Problem texts 48

V. Appendices 52
 a. Glossary of Egyptian terms 52
 b. Sources 52
 c. References 54
Chapter 2
Mesopotamian Mathematics
Eleanor Robson

I. Introduction 58
 a. Mesopotamian mathematics through Western eyes 58
 b. Mathematics and scribal culture in ancient Iraq 62
 c. From tablet to translation 65
 d. Explananda 68

II. The Long Third Millennium, c. 3200–2000 BCE 73
 a. Uruk in the late fourth millennium 73
 b. Shuruppag in the mid-third millennium 74
 c. Nippur and Girsu in the twenty-fourth century BCE 76
 d. Umma and Girsu in the twenty-first century BCE 78

III. The Old Babylonian Period, c. 2000–1600 BCE 82
 a. Arithmetical and metrological tables 82
 b. Mathematical problems 92
 c. Rough work and reference lists 142

IV. Later Mesopotamia, c. 1400–150 BCE 154

V. Appendices 180
 a. Sources 180
 b. References 181

Chapter 3
Chinese Mathematics
Joseph W. Dauben

Preliminary Remarks 187

I. China: The Historical and Social Context 187

II. Methods and Procedures: Counting Reds, The “Out-In” Principle 194

III. Recent Archaeological Discoveries: The Earliest Yet-Known Bamboo Text 201

IV. Mathematics and Astronomy: The Zhou bi suan jing and Right Triangles (The Gou-gu or “Pythagorean” Theorem) 213

V. The Chinese “Euclid”, Liu Hui 226
 a. The Nine Chapters 227
 b. The Sea Island Mathematical Classic 288

VI. The “Ten Classics” of Ancient Chinese Mathematics 293
 a. Numbers and arithmetic: The Mathematical Classic of Master Sun 295
 b. The Mathematical Classic of Zhang Qiujian 302
Chapter 4

Mathematics in India

Kim Plofker

I. Introduction: Origins of Indian Mathematics 385

II. Mathematical Texts in Ancient India 386
 a. The Vedas 386
 b. The Śulbasūtras 387
 c. Mathematics in other ancient texts 393
 d. Number systems and numerals 395

III. Evolution of Mathematics in Medieval India 398
 a. Mathematics chapters in Siddhānta texts 398
 b. Transmission of mathematical ideas to the Islamic world 434
 c. Textbooks on mathematics as a separate subject 435
 d. The audience for mathematics education 477
 e. Specialized mathematics: Astronomical and cosmological problems 478

IV. The Kerala School 480
 a. Mādhava, his work, and his school 480
 b. Infinite series and the role of demonstrations 481
 c. Other mathematical interests in the Kerala school 493

V. Continuity and Transition in the Second Millennium 498
 a. The ongoing development of Sanskrit mathematics 498
 b. Scientific exchanges at the courts of Delhi and Jaipur 504
 c. Assimilation of ideas from Islam; mathematical table texts 506