Preface xi

Chapter 1. Introduction to PLLs 1
 1.1 Operating Principles of the PLL 1
 1.2 Historical Background 5
 1.3 Classification of PLL Types 6

Chapter 2. Mixed-Signal PLL Building Blocks 9
 2.1 Block Diagram of the Mixed-Signal PLL 9
 2.2 A Note on Phase Signals 10
 2.3 Building Blocks of Mixed-Signal PLLs 12
 2.4 Phase Detectors 13
 2.4.1 Type 1: Multiplier phase detectors 13
 2.4.2 Type 2: EXOR phase detectors 16
 2.4.3 Type 3: JK-flipflop phase detectors 18
 2.4.4 Type 4: Phase-frequency detectors (PFDs) 20
 2.5 Loop Filters (First Order) 28
 2.5.1 Type 1: Passive lead-lag filters 29
 2.5.2 Type 2: Active lead-lag filters 30
 2.5.3 Type 3: Active PI filters 31
 2.6 Controlled Oscillators 32
 2.6.1 Relaxation oscillators 32
 2.6.2 Resonant oscillators 36
 2.7 Down Scalers 36

Chapter 3. Mixed-Signal PLL Analysis 39
 3.1 PLL Performance in the Locked State 39
 3.2 The Mathematical Model for the Locked State 39
 3.3 A Definition of Transfer Functions 41
 3.3.1 The PLL transfer function for systems using the voltage output phase detector 41
 3.3.2 The PLL transfer function for systems using current output phase detector 46
 3.4 Transient Response of the PLL in the Locked State 47
 3.4.1 Phase step applied to the reference input 47
 3.4.2 Frequency step applied to the reference input 48
 3.4.3 Frequency ramp applied to the reference input 49
3.5 Steady-State Error of the PLL 50
3.6 The Order of the PLL System 52
 3.6.1 The number of poles 52
 3.6.2 A special case: the first-order PLL 53
3.7 PLL Performance in the Unlocked State 53
3.8 Mathematical Model for the Unlocked State 53
3.9 Key Parameters of the PLL 62
 3.9.1 Hold range $\Delta \omega_H$ 62
 3.9.2 Lock range $\Delta \omega_L$ and lock time T_L 65
 3.9.3 Pull-in range $\Delta \omega_P$ and pull-in time T_P 71
 3.9.4 Pull-out range $\Delta \omega_{PO}$ 83
3.10 Optimizing the Lock Process 86
 3.10.1 Fastlock techniques 87
 3.10.2 Cycle slip reduction (CSR) 89
3.11 In-Lock detectors 91

Chapter 4. PLL Performance in the Presence of Noise 93
 4.1 Sources and Types of Noise in a PLL 93
 4.2 Defining Noise Parameters 95
 4.3 The Impact of Noise on PLL Performance 96
 4.4 Pull-in Techniques for Noisy Signals 104
 4.4.1 The sweep technique 104
 4.4.2 The switched-filter technique 106

Chapter 5. Design Procedure for Mixed-Signal PLLs 107

Frequency Synthesizers 119
 6.1 Synthesizers in Wireless and RF Applications 119
 6.2 Integer-N Frequency Synthesizers without Prescalers 120
 6.3 Integer-N Frequency Synthesizers with Prescalers 121
 6.3.1 Fixed division ratio prescalers 121
 6.3.2 Dual-modulus prescalers 122
 6.3.3 Four-modulus prescalers 124
 6.4 Extending the Frequency Range with Mixers and Frequency Multipliers 126
 6.5 Case Study: Designing an Integer-N PLL Frequency Synthesizer 128
 6.6 Single-Loop and Multi-Loop Frequency Synthesizers 131
 6.7 Phase Noise and Spurs in Integer Frequency Synthesizers 134
 6.7.1 Phase noise created by the reference oscillator 136
 6.7.2 Phase noise created by the VCO 145
 6.7.3 Spurs created by the phase detector 150

Chapter 7. Mixed-Signal PLL Applications Part 2: Fractional-N
Frequency Synthesizers 159
 7.1 Realization of Fractional Divider Ratios 159
 7.2 Analog Spur Reduction Techniques 161
 7.3 Digital Spur Reduction Techniques 165
 7.4 Reviewing the $\Sigma \Delta$ Modulator 166
 7.4.1 The $\Sigma \Delta$ A/D converter 166
 7.4.2 The $\Sigma \Delta$ D/A converter 181
 7.4.3 The $\Sigma \Delta$ modulator used in frequency synthesizers 183
 7.4.4 Nonlinear effects in $\Sigma \Delta$ modulators 193
7.5 The Design Procedure for $\Sigma\Delta$ Modulators 194
7.6 Spurs, Fractional Spurs, and Subfractional Spurs 196
7.7 Alternative $\Sigma\Delta$ Modulators: The MASH Converter 197

Chapter 8. Mixed-Signal PLL Applications Part 3: Miscellaneous Applications 203
8.1 Retiming and Clock Signal Recovery 203
8.2 Motor-Speed Control 210

Chapter 9. Higher-Order Loops 217
9.1 Motivation for Higher-Order Loops 217
9.2 Analyzing the Stability of Higher-Order Loops 217
9.3 Designing Third-Order PLLs 220
 9.3.1 The Passive lead-lag loop filter for voltage input 221
 9.3.2 Passive lead-lag loop filter for current input 223
 9.3.3 Active lead-lag loop filter 225
 9.3.4 Active PI loop filter 227
9.4 Designing Fourth-Order PLLs 230
 9.4.1 Passive lead-lag loop filters for voltage input 230
 9.4.2 The passive lead-lag loop filter for current input 233
 9.4.3 The active lead-lag loop filter 235
 9.4.4 The active PI loop filter 238
9.5 Designing Fifth-Order PLLs 241
 9.5.1 Passive lead-lag loop filter for voltage input 242
 9.5.2 The passive lead-lag loop filter for current input 244
 9.5.3 Active lead-lag loop filter 247
 9.5.4 Active PI loop filter 251
9.6 The Key Parameters of Higher-Order PLLs 255

Chapter 10. Computer-Aided Design and Simulation of Mixed-Signal PLLs 257
10.1 Overview 257
10.2 Quick Tour 259
 10.2.1 Configuring the PLL system 259
 10.2.2 Designing the loop filter 260
 10.2.3 Analyzing the stability of the loop 261
 10.2.4 Getting the loop filter schematic 262
 10.2.5 Running simulations 263
10.3 Simulations with and without Averaging 264
10.4 Simulations with Noisy Reference Signals 266
10.5 Displaying Waveforms of Tri-State Signals 267
10.6 Getting Help 268
10.7 Shaping the Appearance of Graphic Objects 268
10.8 Suggestions for Case Studies 269

Chapter 11. All-Digital PLLs (ADPLLs) 271
11.1 ADPLL Components 271
 11.1.1 All-digital phase detectors 271
 11.1.2 All-digital loop filters 277
 11.1.3 Digital-controlled oscillators 282
11.2 Examples of Implemented ADPLLs 286
11.3 Theory of a Selected Type of ADPLL
11.3.1 The effects of discrete-time operation 293
11.3.2 The hold range of the ADPLL 298
11.3.3 Frequency-domain analysis of the ADPLL 301
11.3.4 Ripple reduction techniques 303
11.3.5 Higher-order ADPLLs 304

11.4 Typical ADPLL Applications 305

11.5 Designing an ADPLL
11.5.1 Case study: designing an ADPLL FSK decoder 307

Chapter 12. Computer-Aided Design and Simulation of ADPLLs 311

12.1 Designing the ADPLL 311
12.2 Simulating ADPLL Performance 313
12.3 Case Studies on ADPLL Behavior 314

Chapter 13. The Software PLL (SPLL) 321

13.1 The Hardware-Software Trade-off 321
13.2 The Feasibility of an SPLL Design 322
13.3 SPLL Examples
13.3.1 An LPLL-like SPLL 324
13.3.2 A DPLL-like SPLL 330
13.3.3 A note on ADPLL-like SPLLs 339

Chapter 14. The PLL in Communications 341

14.1 Types of Communications: Baseband and Bandpass 341
14.2 Amplitude Shift Keying 343
14.3 Phase Shift Keying
14.3.1 Binary phase shift keying (BPSK) 343
14.3.2 Quadrature phase shift keying 345
14.3.3 Offset quadrature PSK (OQPSK) 346
14.3.4 m-ary PSK 347
14.3.5 Differential PSK (DPSK) 347
14.4 Frequency Shift Keying
14.4.1 Binary FSK 348
14.4.2 m-ary FSK 350
14.4.3 Minimum shift keying (MSK) and Gaussian MSK (GMSK) 351
14.5 Quadrature Amplitude Modulation (QAM) 355
14.6 The Role of Synchronization in Digital Communications 356
14.7 Digital Communications Using BPSK
14.7.1 Transmitter considerations 357
14.7.2 Receiver considerations 362
14.8 Digital Communications Using QPSK
14.8.1 Transmitter considerations 372
14.8.2 Receiver considerations 373
14.9 Digital Communications Using QAM 375
14.10 Digital Communications Using FSK
14.10.1 Simple FSK decoders: easy to implement, but not effective 377
14.10.2 Coherent FSK detection 379
14.10.3 Noncoherent FSK detection and quadrature FSK decoders 380
14.11 Digital Communications in Mobile Phones 381
14.12 Bandwidth Efficiency, Bit Error Rate (BER), and the Signal Power Efficiency of Digital Modulation Schemes 382