Contents

Preface xiii
List of contributors xvii

Chapter 1 Mind and brain
Bernard J. Baars
1.0 Introduction 3
2.0 An invitation to mind-brain science 3
3.0 Some starting points 4
3.1 Distance: seven orders of magnitude 4
3.2 Time: ten orders of magnitude 6
3.3 The need to make inferences – going beyond the raw observations 7
3.4 The importance of convergent measures 10
3.5 Major landmarks of the brain 10
4.0 Some history, and ongoing debates 13
4.1 The mind and the brain 13
4.2 Biology shapes cognition and emotion 15
4.3 Cajal’s neuron doctrine: the working assumption of brain science 16
4.4 Pierre-Paul Broca and the localization of speech production 16
4.5 The conscious and unconscious mind 23
5.0 The return of consciousness in the sciences 24
5.1 How conscious and unconscious brain events are studied today 24
5.2 History hasn’t stopped 26
6.0 Summary 27
7.0 End of chapter exercises 28
7.1 Study questions 28
7.2 Drawing exercise 29

Chapter 2 A framework
Bernard J. Baars
1.0 Introduction 31
2.0 Classical working memory 32
2.1 The ‘inner senses’ 33
2.2 Output functions 34
2.3 Only a fleeting moment . . . 34
2.4 Understanding Clive Wearing in the functional framework 37
2.5 The importance of immediate memory 38
3.0 Limited and large-capacity functions 39
3.1 Dual task limits 39
3.2 Some very large brain capacities 41
3.3 Why are there such narrow capacity limits? 42
3.4 Measuring working memory 42
4.0 The inner and outer senses 44
4.1 The mind’s eye, ear and voice 45
4.2 The imagery sketchpad may use visual regions of cortex 46
4.3 Is inner speech like outer speech? 47
4.4 Is there only one working memory? 47
5.0 The central executive 48
5.1 Executive effort and automaticity 49
5.2 Executive and spontaneous attention 51
6.0 Action 52
7.0 Consolidation of short-term events into long-term memory 53
7.1 Is working memory just re-activated permanent memory? 54
8.0 Summary 55
9.0 Study questions and drawing practice 56
9.1 Study questions 56
9.2 Drawing exercises 56

Chapter 3 Neurons and their connections
Bernard J. Baars
1.0 Introduction 59
1.1 Real and idealized neurons 60
1.2 Excitation and inhibition 61
1.3 Neural computation 63
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Subtitles</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.7</td>
<td>Areas involved in object recognition</td>
<td></td>
<td>161</td>
</tr>
<tr>
<td>2.8</td>
<td>Lateral occipital complex (LOC)</td>
<td></td>
<td>162</td>
</tr>
<tr>
<td>2.9</td>
<td>Fusiform face area (FFA)</td>
<td></td>
<td>162</td>
</tr>
<tr>
<td>2.10</td>
<td>Parahippocampal place area (PPA)</td>
<td></td>
<td>162</td>
</tr>
<tr>
<td>3.0</td>
<td>Theories of visual consciousness: where does it happen?</td>
<td></td>
<td>162</td>
</tr>
<tr>
<td>3.1</td>
<td>Hierarchical and interactive theories of vision</td>
<td></td>
<td>163</td>
</tr>
<tr>
<td>4.0</td>
<td>Brain areas necessary for visual awareness: lesion studies</td>
<td></td>
<td>164</td>
</tr>
<tr>
<td>4.1</td>
<td>Consequences of damage to early visual areas</td>
<td></td>
<td>164</td>
</tr>
<tr>
<td>4.2</td>
<td>Extrastriate lesions – damage outside area V1</td>
<td></td>
<td>165</td>
</tr>
<tr>
<td>4.3</td>
<td>Damage to ventral object areas</td>
<td></td>
<td>166</td>
</tr>
<tr>
<td>4.4</td>
<td>Damage to dorsal parietal areas</td>
<td></td>
<td>168</td>
</tr>
<tr>
<td>5.0</td>
<td>Linking brain activity and visual experience</td>
<td></td>
<td>170</td>
</tr>
<tr>
<td>5.1</td>
<td>Multistable perception</td>
<td></td>
<td>170</td>
</tr>
<tr>
<td>5.2</td>
<td>Binocular rivalry: what you see is what you get activated</td>
<td></td>
<td>171</td>
</tr>
<tr>
<td>5.3</td>
<td>Visual detection: did you see it?</td>
<td></td>
<td>172</td>
</tr>
<tr>
<td>5.4</td>
<td>Constructive perception: more to vision than meets the eye...</td>
<td></td>
<td>173</td>
</tr>
<tr>
<td>5.5</td>
<td>Neural correlates of object recognition</td>
<td></td>
<td>175</td>
</tr>
<tr>
<td>6.0</td>
<td>Manipulations of visual awareness</td>
<td></td>
<td>175</td>
</tr>
<tr>
<td>6.1</td>
<td>Transcranial magnetic stimulation</td>
<td></td>
<td>176</td>
</tr>
<tr>
<td>6.2</td>
<td>Unconscious perception</td>
<td></td>
<td>177</td>
</tr>
<tr>
<td>7.0</td>
<td>Summary</td>
<td></td>
<td>178</td>
</tr>
<tr>
<td>8.0</td>
<td>Study questions and drawing exercises</td>
<td></td>
<td>180</td>
</tr>
</tbody>
</table>

Chapter 7 Hearing and speech
Nicole M. Gage

1.0 Introduction 183
1.1 A model for sound processing 184
1.2 Sound and hearing basics 186

2.0 The central auditory system 190
2.1 Auditory pathways 191
2.2 Auditory cortex 192

3.0 Functional mapping of auditory processing 197
3.1 Primary auditory cortex 197
3.2 The role of the planum temporale in sound decoding 197
3.3 Cortical auditory ‘what’ and ‘where’ systems 199

4.0 Speech perception 207
4.1 Background and history 208
4.2 Early theories of speech perception 210
4.3 Functional mapping of speech-specific processes 211

Chapter 8 Attention and consciousness
Bernard J. Baars

Introduction 225

2.0 A distinction between attention and consciousness 225
2.1 Cortical selection and integration 226
2.2 Selective attention: voluntary and automatic 228

3.0 Experiments on attention 228
3.1 Methods for studying selective attention 230

4.0 The brain basis of attention 233
4.1 Attention as biased competition among neuron populations 233
4.2 Guiding the spotlight 234
4.3 Salience maps help guide attentional selection 234
4.4 Executive (voluntary) attention 235
4.5 Visual attention may have evolved from eye movement control 236
4.6 Maintaining attention against distraction 236
4.7 Attention and consciousness 240

5.0 The brain basis of conscious experience 240
5.1 Conscious cognition 240
5.2 Unconscious comparisons 241
5.3 Binding features into conscious objects 243
5.4 Visual feature integration in the macaque 244
5.5 Conscious events recruit widespread brain activation 246
5.6 Fast cortical interactions may be needed for conscious events 250
6.0 A summary and some hypotheses 251
7.0 Study questions 253

Chapter 9 Learning and memory
Morris Moscovitch, Jason M. Chein, Deborah Talmi, and Melanie Cohn

1.0 Introduction 255
1.1 A functional overview 258
1.2 Learning and memory in the functional framework 258
1.3 Implicit and explicit memory 260
2.0 Amnesia 261
2.1 HM: the best-studied amnesia patient 261
2.2 A summary of amnesia 264
2.3 Spared functions in amnesia: implicit and procedural memory 264
2.4 Spared implicit learning 266
3.0 Memories are made of this 267
3.1 Electrically evoked autobiographical memories 267
3.2 Long-term potentiation and long-term depression: excitatory and inhibitory memory traces 269
3.3 Consolidation: from temporary to permanent storage 270
3.4 Rapid consolidation: synaptic mechanisms, gene transcription, and protein synthesis 273
3.5 System consolidation: interaction between the medial temporal lobes and neocortex 273
4.0 Varieties of memory 273
4.1 Episodic and semantic memory: ‘Remembering’ versus ‘knowing’ 274
4.2 Episodic memories may turn into semantic memories over time 277
4.3 Episodic and semantic memory are often combined 277
5.0 MTL in explicit learning and memory 278
5.1 Divided attention interferes with learning 278
6.0 Prefrontal cortex, consciousness and working memory 279
6.1 Working with memory: the frontal lobe works purposefully with memory 282
6.2 Prefrontal cortex in explicit (conscious) and implicit (unconscious) learning and memory 283

6.3 Different types of working memory 284
6.4 Prefrontal cortex – storage or process control? 285
6.5 Combining prefrontal and MTL regions for working memory 286
7.0 Retrieval and metacognition 286
7.1 False retrieval 287
7.2 Hemispheric lateralization in retrieval 287
7.3 Theta rhythms may coordinate memory retrieval 288
8.0 Other kinds of learning 288
9.0 Summary 289
10.0 Drawings and study questions 290

Chapter 10 Thinking and problem-solving
Bernard J. Baars

1.0 Working memory 294
1.1 Working memory overlaps with attention, conscious events and episodic recall 295
2.0 Explicit problem-solving 296
2.1 Executive control in problem-solving 298
3.0 Mental workload and cortical activity 301
4.0 Using existing knowledge 303
4.1 Practice and training may change connectivities in the brain 304
4.2 Semantic memory 304
4.3 Abstract concepts, prototypes, and networks 305
4.4 Knowledge comes in networks 306
4.5 Conceptual deficits 308
4.6 Judgments of quantity and number 309
5.0 Implicit thinking 310
5.1 Feelings of knowing 311
6.0 Summary and conclusions 313
7.0 Drawings and study questions 314

Chapter 11 Language
Bernard J. Baars

1.0 Introduction 317
2.0 The nature of language 318
2.1 Biological aspects 320
2.2 Language origins 325
2.3 Speech versus language 325
3.0 The sounds of spoken language 325
4.0 Planning and producing speech 328
5.0 Evolutionary aspects of speaking and listening 330
6.0 Words and meanings 331
CONTENTS

6.1 A cultural treasury of words and ideas 333
6.2 Recognizing synonyms 333
6.3 Current evidence about words and their meanings is fragmentary 334
7.0 Syntax, nesting and sequencing 335
8.0 Prosody and melody 335
9.0 Meaningful statements 337
10.0 Unified representations of language 338
11.0 Summary 339
12.0 Practice drawings and study questions 340

Chapter 12 Goals, executive control, and action
Elkhonon M. Goldberg and Dmitri H. Bougakov

1.0 Introduction 343
2.0 Phylogeny and ontogeny 345
3.0 Function overview 345
4.0 Closer look at frontal lobes 346
4.1 Gross anatomy and connections 346
4.2 How prefrontal cortex is defined 347
5.0 A closer look at frontal lobe function 349
5.1 Traditional perspective on frontal lobe function: motor functions, actions and plans 349
6.0 Memories of the future 350
7.0 Novelty and routine 351
8.0 Ambiguity and actor-centered cognition 352
9.0 Working memory and working with memory 353
10.0 Theory of mind and intelligence 354
11.0 Frontal lobe pathology, executive impairment, and social implications of frontal lobe dysfunction 355
11.1 The fragile frontal lobes 355
11.2 Frontal lobe syndromes 355
11.3 Other clinical conditions associated with frontal lobe damage 361
12.0 Executive control and social maturity 362
13.0 Towards a unified theory of executive control: a conclusion 366
14.0 Drawing exercises and study questions 366

Chapter 13 Emotion
Katharine McGovern

1.0 Introduction 369
1.1 The triune brain 370
1.2 Basic emotions and the role of reflective consciousness 371
2.0 Panksepp’s emotional brain systems 371
2.1 Feelings of emotion 373
3.0 The FEAR system 373

3.1 Conscious and unconscious fear processing: LeDoux’s high road and low road 376
3.2 Fear without awareness 376
3.3 Affective blindsight 377
3.4 Cognition-emotion interactions: FEAR 379
3.5 Implicit emotional learning and memory 379
3.6 Emotional modulation of explicit memory 379
3.7 Emotional influences on perception and attention 380
3.8 Emotion and social behavior 381
3.9 Emotion inhibition and regulation 381
4.0 The SEEKING system 383
4.1 Re-interpreting ‘reward’: from reward to reward prediction to reward prediction error 384
4.2 Reward is more than learning 385
4.3 ‘Reward pathway’ and drug use 387
4.4 Reward cues influence attention 387
5.0 Conclusion 388
6.0 Chapter review 388
6.1 Study questions 388
6.2 Drawing exercises 388

Chapter 14 Social cognition: Perceiving the mental states of others
Katharine McGovern

1.0 Overview 391
1.1 Terms that are used to refer to social cognition 392
1.2 The importance of perspective: the first, second, and third person 392
1.3 Approaches to perceiving others’ minds 393
2.0 An organizing framework for social cognition 394
2.1 Intention 394
2.2 Eye detection 394
2.3 Shared attention 395
2.4 Higher-order theory of mind 395
3.0 Mirror neurons and intention detection 395
3.1 From action to intention 395
3.2 Finding posterior mirror neuron 399
3.3 Eye detection and gaze perception 400
3.4 Shared attention 401
3.5 Higher-order TOM abilities 402
3.6 Social cognition of others like and unlike us: I-It in the brain? 405
3.7 Face perception 406
3.8 Disordered social cognition in autism 408
CONTENTS

4.0 Summary 409
5.0 Chapter review 409
 5.1 Study questions 409
 5.2 Drawing exercises 409

Chapter 15 Development
Nicole M. Gage and Mark H. Johnson

1.0 Introduction 411
 1.1 New techniques for investigating the developing brain 412
 1.2 The mystery of the developing brain: old questions and new 413
2.0 Prenatal development: from blastocyst to baby 413
 2.1 Epigenesis 414
 2.2 The anatomy of brain development 414
 2.3 Neural migration 416
 2.4 Nature and nurture revisited 420
 2.5 Prenatal hearing experience: voice and music perception before birth 422
3.0 The developing brain: a lifetime of change 423
 3.1 The rise and fall of postnatal brain development 423
 3.2 Regional differences in brain development 424
4.0 Developing mind and brain 425
 4.1 The first year of life: an explosion of growth and development 427
 4.2 Childhood and adolescence: dynamic and staged growth 437
5.0 Early brain damage and developmental plasticity 448
6.0 Chapter Summary 450
7.0 Chapter review 451
 7.1 Study questions 451

Appendices

A Neural models: A route to cognitive brain theory
Igor Aleksander

Part 1: Traditional neural models 454
 1.0 Why two parts? 454
 2.0 What is a neural model? 454
 3.0 The neuron 455
 4.0 The basic artificial neuron (McCulloch and Pitts, 1943) 456
 5.0 Learning in a neuron – some basic notions 457

B Methods for observing the living brain
Thomas Ramsøy, Daniela Balslev, and Olaf Paulson

 1.0 Historical background 477
 1.1 Correlating brain and mind 477
 1.2 Recording brain activation 478
CONTENTS

2.0 Coupling brain activity to blood flow and metabolism 479
2.1 The physiological basis of functional brain mapping using PET and fMRI 479

3.0 Methods 479
3.1 Designing experiments 481
3.2 Electroencephalography (EEG) 481
3.3 Magnetoencephalography (MEG) 485
3.4 Single photon emission computed tomography (SPECT) 490
3.5 Positron emission tomography (PET) 491

3.6 Magnetic resonance imaging (MRI) 492
3.7 MRI – a tool for the future 503
3.8 Optical imaging 506

4.0 Multimodal brain imaging 506
4.1 Simultaneous imaging from different sources 506
4.2 Imaging genetics 510

5.0 Concluding remarks 510

References 513

Index 537