An Introduction to
Gödel’s Theorems

Peter Smith
University of Cambridge
Contents

Preface xiii

1 What Gödel's Theorems say 1
 Basic arithmetic • Incompleteness • More incompleteness • Some implications? • The unprovability of consistency • More implications? • What's next?

2 Decidability and enumerability 8
 Functions • Effective decidability, effective computability • Enumerable sets • Effective enumerability • Effectively enumerating pairs of numbers

3 Axiomatized formal theories 17
 Formalization as an ideal • Formalized languages • Axiomatized formal theories • More definitions • The effective enumerability of theorems • Negation-complete theories are decidable

4 Capturing numerical properties 28
 Three remarks on notation • A remark about extensionality • The language L_A • A quick remark about truth • Expressing numerical properties and relations • Capturing numerical properties and relations • Expressing vs. capturing: keeping the distinction clear

5 The truths of arithmetic 37
 Sufficiently expressive languages • More about effectively enumerable sets • The truths of arithmetic are not effectively enumerable • Incompleteness

6 Sufficiently strong arithmetics 43
 The idea of a 'sufficiently strong' theory • An undecidability theorem • Another incompleteness theorem

7 Interlude: Taking stock 47
 Comparing incompleteness arguments • A road-map

8 Two formalized arithmetics 51
 BA, Baby Arithmetic • BA is negation complete • Q, Robinson Arithmetic • Q is not complete • Why Q is interesting
Contents

9 **What Q can prove**
Systems of logic · Capturing *less-than-or-equal-to* in Q · Adding ‘≤’ to Q · Q is order-adequate · Defining the Δ_0, Σ_1 and Π_1 wffs · Some easy results · Q is Σ_1-complete · Intriguing corollaries · Proving Q is order-adequate

10 **First-order Peano Arithmetic**
Induction and the Induction Schema · Induction and relations · Arguing using induction · Being more generous with induction · Summary overview of PA · Hopping for completeness? · Where we’ve got to · Is PA consistent?

11 **Primitive recursive functions**
Introducing the primitive recursive functions · Defining the p.r. functions more carefully · An aside about extensionality · The p.r. functions are computable · Not all computable numerical functions are p.r. · Defining p.r. properties and relations · Building more p.r. functions and relations · Further examples

12 **Capturing p.r. functions**
Capturing a function · Two more ways of capturing a function · Relating our definitions · The idea of p.r. adequacy

13 **Q is p.r. adequate**
More definitions · Q can capture all Σ_1 functions · L_A can express all p.r. functions: starting the proof · The idea of a β-function · L_A can express all p.r. functions: finishing the proof · The p.r. functions are Σ_1 · The adequacy theorem · Canonically capturing

14 **Interlude: A very little about Principia**
Principia’s logicism · Gödel’s impact · Another road-map

15 **The arithmetization of syntax**
Gödel numbering · Coding sequences · Term, Atom, Wff, Sent and Prf are p.r. · Some cute notation · The idea of diagonalization · The concatenation function · Proving that Term is p.r. · Proving that Atom and Wff are p.r. · Proving Prf is p.r.

16 **PA is incomplete**
Reminders · ‘G is true if and only if it is unprovable’ · PA is incomplete: the semantic argument · ‘G is of Goldbach type’ · Starting the syntactic argument for incompleteness · ω-incompleteness, ω-inconsistency · Finishing the syntactic argument · ‘Gödel sentences’ and what they say

17 **Gödel’s First Theorem**
Contents

Generalizing the semantic argument • Incompletability • Generalizing the syntactic argument • The First Theorem

18 Interlude: About the First Theorem 153

What we’ve proved • The reach of Gödelian incompleteness • Some ways to argue that G_T is true • What doesn’t follow from incompleteness • What does follow from incompleteness?

19 Strengthening the First Theorem 162

Broadening the scope of the incompleteness theorems • True Basic Arithmetic can’t be axiomatized • Rosser’s improvement • 1-consistency and Σ_1-soundness

20 The Diagonalization Lemma 169

Provability predicates • An easy theorem about provability predicates • G and Prov • Proving that G is equivalent to $\neg \text{Prov}(\neg G)$ • Deriving the Lemma

21 Using the Diagonalization Lemma 175

The First Theorem again • An aside: ‘Gödel sentences’ again • The Gödel-Rosser Theorem again • Capturing provability? • Tarski’s Theorem • The Master Argument • The length of proofs

22 Second-order arithmetics 186

Second-order arithmetical languages • The Induction Axiom • Neat arithmetics • Introducing PA_2 • Categoricity • Incompleteness and categoricity • Another arithmetic • Speed-up again

23 Interlude: Incompleteness and Isaacson’s conjecture 199

Taking stock • Goodstein’s Theorem • Isaacson’s conjecture • Ever upwards • Ancestral arithmetic

24 Gödel’s Second Theorem for PA 212

Defining Con • The Formalized First Theorem in PA • The Second Theorem for PA • On ω-incompleteness and ω-consistency again • How should we interpret the Second Theorem? • How interesting is the Second Theorem for PA? • Proving the consistency of PA

25 The derivability conditions 222

More notation • The Hilbert-Bernays-Löb derivability conditions • G, Con, and ‘Gödel sentences’ • Incompleteness and consistency extensions • The equivalence of $\text{fixed points for } \neg \text{Prov}$ • Theories that ‘prove’ their own inconsistency • Löb’s Theorem
26 Deriving the derivability conditions
Nice* theories • The second derivability condition • The third derivability condition • Useful corollaries • The Second Theorem for weaker arithmetics • Jeroslow’s Lemma and the Second Theorem

27 Reflections
The Second Theorem: the story so far • There are provable consistency sentences • What does that show? • The reflection schema: some definitions • Reflection and PA • Reflection, more generally • ‘The best and most general version’ • Another route to accepting a Gödel sentence?

28 Interlude: About the Second Theorem
‘Real’ vs ‘ideal’ mathematics • A quick aside: Gödel’s caution • Relating the real and the ideal • Proving real-soundness? • The impact of Gödel • Minds and computers • The rest of this book: another road-map

29 μ-Recursive functions
Minimization and μ-recursive functions • Another definition of μ-recursive-ness • The Ackermann-Péter function • The Ackermann-Péter function is μ-recursive • Introducing Church’s Thesis • Why can’t we diagonalize out? • Using Church’s Thesis

30 Undecidability and incompleteness
Q is recursively adequate • Nice theories can only capture recursive functions • Some more definitions • Q and PA are undecidable • The Entscheidungsproblem • Incompleteness theorems again • Negation-complete theories are recursively decidable • Recursively adequate theories are not recursively decidable • What’s next?

31 Turing machines
The basic conception • Turing computation defined more carefully • Some simple examples • ‘Turing machines’ and their ‘states’

32 Turing machines and recursiveness
μ-Recursiveness entails Turing computability • μ-Recursiveness entails Turing computability: the details • Turing computability entails μ-recursiveness • Generalizing

33 Halting problems
Two simple results about Turing programs • The halting problem • The Entscheidungsproblem again • The halting problem and incompleteness • Another incompleteness argument • Kleene’s Normal Form Theorem • Kleene’s Theorem entails Gödel’s First Theorem
34 The Church–Turing Thesis
 From Euclid to Hilbert • 1936 and all that • What the Church–Turing
 Thesis is not • The status of the Thesis

35 Proving the Thesis?
 The project • Vagueness and the idea of computability • Formal proofs
 and informal demonstrations • Squeezing arguments • The first premiss
 for a squeezing argument • The other premisses, thanks to Kolmogorov
 and Uspenskii • The squeezing argument defended • To summarize

36 Looking back

Further reading

Bibliography

Index