Development of a novel balloon-borne optical sonde for the measurement of ozone and other stratospheric trace gases

Entwicklung einer ballongestützten optischen Sonde zur Messung von Ozon und anderen stratosphärischen Spurengasen

Mareile Wolff

ISSN 1618 - 3193
Contents

Abstract 7

Zusammenfassung 8

1 Introduction 9
 1.1 Aims of this work ... 11
 1.2 Synopsis .. 12

2 Stratospheric chemistry in the climate system 14
 2.1 Stratospheric ozone chemistry 15
 2.1.1 Vertical structure of the atmosphere 15
 2.1.2 Ozone chemistry 17
 2.1.3 The main ozone depletion processes 22
 2.2 The present ozone situation 24
 2.2.1 Ozone distribution before 1970 25
 2.2.2 Ozone destruction since the 1980s 26
 2.2.3 The Montreal protocol 31
 2.3 Stratospheric chemistry and climate change 31

3 Measurement methods for stratospheric ozone and other trace gases 34
 3.1 Optical methods ... 35
 3.1.1 Trace retrieval by absorption spectroscopy 37
 3.1.2 Optical measurement systems 39
 3.2 Non optical methods for ozone measurements 43

4 The PIOS instrument 45
 4.1 Technical design of the instrument 46
 4.1.1 Spectrometer and sampling optics 46
 4.1.2 Radiosonde ... 47
 4.1.3 Controlling unit 52
 4.1.4 Overall sensor design 55
 4.2 Sounding procedure 59
5 Characterisation of the PIOS instrument
5.1 Optical resolution and instrument's slit function
5.2 Dark current
5.3 Spectral calibration
5.4 Radiative calibration

6 Description of the measurement campaigns and technical results
6.1 Technical flights at the Meteorological Observatory Lindenberg
 6.1.1 Meteorological Observatory Lindenberg
 6.1.2 Technical status and improvements
 6.1.3 Technical aspects of the flights
6.2 Measurement campaign at Koldewey-Station, Ny-Ålesund
 6.2.1 Koldewey-Station
 6.2.2 High altitude polyethylene balloons
 6.2.3 Comparative measurements
 6.2.4 Technical status and improvements
 6.2.5 Technical aspects of the flights
6.3 Measurement campaign at the MO Hohenpeißenberg
 6.3.1 Meteorological Observatory Hohenpeißenberg
 6.3.2 Comparative measurements
 6.3.3 Technical status and improvements
 6.3.4 Technical aspects of the flights
6.4 Discussion

7 Ozone profile retrieval
7.1 The computing algorithm
7.2 Description of the used functions
 7.2.1 Correction of data failures
 7.2.2 Air mass approximation
 7.2.3 Correction of the temperature influence on the optical measurements
 7.2.4 Rayleigh scattering
 7.2.5 Ozone absorption cross section
 7.2.6 Extraterrestrial radiation
7.3 Calculation of the ozone profile
 7.3.1 The adopted Dobson spectrometer algorithm
 7.3.2 Calculation of the vertical ozone columns
 7.3.3 Estimation of the possible vertical resolution of the ozone profiles
 7.3.4 Calculation of ozone profiles

8 Measurement campaigns: data evaluation
8.1 Irradiance changes with height
 8.1.1 Ultraviolet wavelength range