Temperature Induced Deformations in Match-Cast Segments and their Effects on Precast Segmental Bridges

Vom Promotionsausschuss der Technischen Universität Hamburg-Harburg zur Erlangung des akademischen Grades Doktor-Ingenieur genehmigte Dissertation

von
M.Sc Ra’ed Abendeh aus Jordanien

2006
Table of contents

1 Introduction and scopes

1.1 Introduction .. 1
1.2 Problem statement .. 3
1.3 Objectives ... 4

2 Present state of knowledge

2.1 Segmental bridge .. 6
2.2 Short-line match cast method ... 15
2.3 Bowing of the match-cast segment ... 20
 2.3.1 Heat of hydration ... 21
 2.3.2 Prediction of temperature development in hardening concrete 28
 2.3.3 Heat transfer .. 32
 2.3.3.1 Thermal conductivity ... 34
 2.3.3.2 Convection ... 35
 2.3.3.3 Specific heat ... 36
 2.3.3.4 Thermal diffusivity ... 37
 2.3.3.5 Thermal radiation .. 38
 2.3.4 Thermal expansion of concrete ... 39
 2.3.5 Boundary conditions .. 42
 2.3.6 Setting of concrete .. 47
 2.3.7 Thermal stress development ... 50
 2.3.8 Method of calculating deformation (gap) in match-cast segment 51
2.4 Flange width and shear lag .. 53

3 Experimental investigations and numerical model of match-cast segments

3.1 The San Antonio “V” Project ... 64
 3.1.1 Description of measurement program ... 66
3.2 The Bang Na Expressway, Bangkok .. 69
3.3 Numerical model of match-cast segments .. 76
3.3.1 Verification .. 77
3.3.2 Example of using equivalent moment approach .. 86
3.4 Influences of concrete properties, geometry and boundary conditions on the match-cast process ... 90
3.4.1 Effect of width to length ratio (w/L) ... 90
3.4.2 Effect of concrete type ... 93
3.4.3 Change of the ambient conditions .. 95
3.4.4 Use of insulating plastic materials ... 101
3.5 Summary ... 104
3.6 Model to estimate the temperature gradient ... 106

4 Experimental investigations and numerical model of the segmental bridge

4.1 Test span of the segmental bridge of the Second Stage Expressway System (SES) ... 110
4.2 Numerical model of SES segmental bridge .. 115
4.2.1 Numerical model ... 115
4.2.2 Material properties used in the FE model .. 116
4.2.3 Verification ... 118
4.3 Bowing effect on the segmental bridges ... 121
4.3.1 Bridge loads and load arrangement .. 121
4.3.2 Long-term loads ... 126
4.3.2.1 Creep of concrete .. 127
4.3.2.2 Shrinkage of concrete .. 128
4.3.2.3 Extension of the Ansys creep ... 131
4.3.3 Numerical results ... 133
4.3.3.1 The SES numerical results .. 133
4.3.3.2 The numerical results of Bang Na segmental bridge ... 143
4.4 Recommended design and construction approaches .. 156

5 Summary and conclusion ... 159