Chapter 4
Transformation of discrete-time models
by
N.K. Sinha and G.J. Lastman

1. Introduction
2. Background
3. Evaluation of the natural logarithm of a square matrix
4. Choice of the sampling interval
5. Transformation of models obtained using the δ-operator
6. Conclusions
References

Chapter 5
Methods using Walsh functions
by
E.V. Bohn

1. Introduction
2. Integral equation models
3. Walsh coefficients of $\exp(sx)$
4. Sampled data Walsh coefficients
5. Evaluation of integral functions
6. Parameter identification
7. Walsh function inputs
8. Summary
References
Appendix A: Walsh coefficients of $\exp(s(j)x)$
Appendix B: Operational matrices

Chapter 6
Use of the block-pulse operator
by
Shien-Yu Wang

1. Introduction
2. Definition of block-pulse operator
3. Operational rules of the BPO
4. Parameter identification of continuous nonlinear systems via BPO
5. Identification of distributed parameter systems via BPO
6. Optimal input design for identifying parameters in dynamic systems via BPO
References
Chapter 7
Recursive block pulse function method

by Z.H. Jiang and W. Schaufelberger

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Introduction</td>
<td>205</td>
</tr>
<tr>
<td>2. Block pulse function method</td>
<td>206</td>
</tr>
<tr>
<td>3. Block pulse difference equations</td>
<td>209</td>
</tr>
<tr>
<td>4. Recursive block pulse function method</td>
<td>211</td>
</tr>
<tr>
<td>5. Extensions of recursive block pulse function method</td>
<td>220</td>
</tr>
<tr>
<td>6. Conclusion</td>
<td>223</td>
</tr>
<tr>
<td>References</td>
<td>224</td>
</tr>
</tbody>
</table>

Chapter 8
Continuous model identification via orthogonal polynomials

by K.B. Datta

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Introduction</td>
<td>227</td>
</tr>
<tr>
<td>2. Orthogonal polynomials, integration operational matrix and two-dimensional orthogonal polynomials</td>
<td>230</td>
</tr>
<tr>
<td>3. One shot operational matrix for repeated integration</td>
<td>239</td>
</tr>
<tr>
<td>4. Sine-cosine functions</td>
<td>240</td>
</tr>
<tr>
<td>5. Lumped parameter system identification</td>
<td>243</td>
</tr>
<tr>
<td>6. Distributed parameter system identification</td>
<td>246</td>
</tr>
<tr>
<td>7. Transfer function matrix identification</td>
<td>252</td>
</tr>
<tr>
<td>8. Conclusion</td>
<td>255</td>
</tr>
<tr>
<td>References</td>
<td>255</td>
</tr>
</tbody>
</table>

Chapter 9
Use of numerical integration methods

by H. Dai and N.K. Sinha

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Introduction</td>
<td>259</td>
</tr>
<tr>
<td>2. Identification of single-input full state output systems</td>
<td>260</td>
</tr>
<tr>
<td>3. Identification of continuous-time system in diagonal form</td>
<td>269</td>
</tr>
<tr>
<td>4. Identification using Trapezoidal Pulse Functions</td>
<td>277</td>
</tr>
<tr>
<td>5. Effect of noise in the input-output data</td>
<td>284</td>
</tr>
<tr>
<td>6. Conclusions</td>
<td>287</td>
</tr>
<tr>
<td>References</td>
<td>288</td>
</tr>
</tbody>
</table>
Chapter 10 Application of digital filtering techniques
by
S. Sagara and Z.Y. Zhao

1. Introduction
2. Statement of the problem
3. Signal processing
4. Parameter estimation
5. On the choice of input signal
6. Conclusions
References

Chapter 11 The Poisson moment functional technique - Some New Results
by
D.C. Saha, V.N. Bapat and B.K. Roy

1. Introduction
2. Generalized Poisson moment functionals
3. Combined parameter and state estimation
4. GPMF based IV algorithm
5. Closed loop system identification
6. Discussion and conclusion
References

Chapter 12 Identification, estimation and control of continuous-time systems described by delta operator models
by
Peter C. Young, A. Chotai and Wlodek Tych

1. Introduction
2. The discrete differential (δ) operator TF model
3. Recursive identification and parameter estimation
4. Simulation and practical examples of SRIV modelling
5. True digital control and the PIP controller
6. Conclusions
Appendix 1 δ Operator models: Some brief observations
References
Chapter 13 Identification of multivariable continuous-time systems

by E. Boje

1. Introduction 419
2. A canonical linear multivariable input-output model 420
3. Preparing input-output data for parameter identification by means of integral functionals 427
4. Solving the parameter estimation problem by linear least squares 432
5. Examples 434
6. Conclusions 437
7. Acknowledgement 437

References 438
Appendix 1 State space construction 439
Appendix 2 Controllability and observability 441
Appendix 3 Proof of the identity: \(\det(Mp))I = \text{Adj}(M(p))M(p) \) 441

Chapter 14 Use of pseudo-observability indices in identification of continuous-time multivariable models

by S. Bingulac and D.L. Cooper

1. Introduction 443
2. Pseudo-observable forms 444
3. Identification of discrete-time models 446
4. First-order-hold transformation 451
5. The Log of a square matrix 457
6. Illustrative examples 459
7. Conclusions 469

References 469

Chapter 15 SVD-based subspace methods for multivariable continuous-time systems identification

by M. Moonen, B. de Moor and J. Vandewalle

1. Introduction 474
2. Preliminaries 475
3. An SVD based algorithm for the noise free case 479
4. A QSVSD based algorithm for the colored noise case 481
5. Conclusions 486

References 486
Chapter 16 Identification of continuous-time systems using multiharmonic test signals
by
A. van den Bos

1. Introduction
2. Multiharmonic test signals
3. Estimation of Fourier coefficients
4. Properties of the residuals
5. Estimating the system parameters
6. The covariance matrices of the instrumental variable and the least squares estimators
7. Discussion and extensions
References

Chapter 17 Adaptive model approaches
by
H. Unbehauen

1. Model adaptation via gradient methods
2. Model adaptation using Liapunov's stability theory
3. Model adaptation using hyperstability theory
References

Chapter 18 Nonparametric approaches to identification
by
D. Matko

1. Introduction
2. Concepts of system and signal processing theory
3. Nonparametric identification methods
4. Realization of the methods with digital computers
References

Chapter 19 From fine asymptotics to model selection
by
L. Gerencsér and Zs. Vágó

1. Introduction and first results
2. Characterization of the process $\theta_T - \theta^*$
3. Stochastic complexity for continuous-time processes
4. Appendix
References
Chapter 20 Real time issues in continuous system identification
by
G.P. Rao, A. Patra and S. Mukhopadhyay

1. Introduction 589
2. The real-time identification environment 590
3. The plant and its model 592
4. Measurement system 597
5. Preprocessing of data 599
6. Digitally realizable forms for models of continuous-time (CT) systems 603
7. Algorithms 613
8. Post-processing 616
9. Applications and their specific demands 625
10. Hardware and software support 628
11. An example of implementation 630
12. Conclusions 633
References 634