Janne-Matti Heinola

RELATIVE PERMITTIVITY AND LOSS TANGENT MEASUREMENTS OF PWB MATERIALS USING RING RESONATOR STRUCTURES

Thesis for the degree of Doctor of Science (Technology) to be presented with due permission for public examination and criticism in the Auditorium 1382 at Lappeenranta University of Technology, Lappeenranta, Finland on the 21st of October, 2006, at noon.
CONTENTS

Abstract
Acknowledgements
List of publications
SYMBOLS... 7
ACRONYMS... 8
1 INTRODUCTION ... 9
1.1 Complex permittivity ... 10
1.2 Dielectric characterization of PWB materials 10
1.3 Scope and outline of the thesis 12
1.4 Scientific contribution .. 13
2 RELATIVE PERMITTIVITY AND LOSS TANGENT CHARACTERIZATION USING RING RESONATORS ... 15
2.1 Calculation of the relative permittivity 17
2.2 Calculation of the loss tangent 18
2.2.1 Coupling losses of the resonator 19
2.3 Selecting optimum dimensions for the ring resonator structure .. 20
2.3.1 Design of the coupling gap 21
2.4 Experimental simulations and measurements of the characteristics of the microstrip ring resonator .. 25
2.4.1 Simulations and measurements of the effects of the coupling gap design 25
2.4.2 Simulation of radiation losses of the microstrip ring resonator .. 33
3 MEASUREMENT SETUPS AND INSTRUMENTATION ... 35
3.1 The vector network analyzer setups 35
3.1.1 Control of the network analyzers and measurement data acquisition ... 37
3.1.2 Measurement system for measurements of the temperature dependence of dielectric properties by using the ring resonator structures .. 37
3.1.3 Calibration of the ring resonator measurement 39
3.1.4 Connector interfaces of the ring resonators 41
3.1.5 Variable temperature measurements 44
3.1.6 Measurement of the effects of moisture 47
3.2 Measurement techniques and fixtures used in the experimental comparison measurements with the ring resonator structures .. 49
4 VERIFICATION OF THE RING RESONATOR TECHNIQUE ... 54
FOR DIELECTRIC CHARACTERIZATION ... 54
4.1 Uncertainty analyses of the used measurement techniques .. 54
4.1.1 Uncertainty for the microstrip ring resonator measurements .. 55
4.1.2 Uncertainty for the strip line test technique 58
4.2 Reproducibility of the microstrip ring resonator technique .. 60
4.3 Verication of the dielectric characterization of PWB materials by comparison measurements .. 61
4.3.1 Comparisons with the split-post and split-cylinder resonator techniques .. 62
4.3.2 Comparison with the strip line test technique 75
4.3.3 Comparison with the parallel plate technique 77
4.3.4 Comparison of the conductor loss approximations 83
5 DISCUSSION ... 85
6 CONCLUSIONS... 89
REFERENCES... 91
Appendices A–J
Appended Publications I–VI