TABLE OF CONTENTS

Preface xii

1 Genetic and Phenotypic Variation 3

1.1 Relevance of Population Genetics 4

1.2 Phenotypic Variation in Natural Populations 5
 - Continuous Variation: The Normal Distribution 5
 - Mean and Variance 6
 - The Central Limit Theorem 8
 - Discrete Mendelian Variation 10

1.3 Multiple-Factor Inheritance 12

1.4 Maintenance of Genetic Variation 14

1.5 Molecular Population Genetics 15
 - Electrophoresis 16

1.6 Polymorphisms in DNA Sequences 25
 - Allele Frequencies and Genotype Frequencies 18
 - Polymorphism and Heterozygosity 20
 - Allozyme Polymorphisms 21
 - Inferences from Allozyme Polymorphisms 23

1.7 Utility of Genetic Polymorphisms 38
5 Darvinian Selection 199

5.1 Selection in Haploid Organisms 200
- Discrete Generations 200
- Continuous Time 204
- Change in Allele Frequency in Haploids 205
- Darwinian Fitness and Malthusian Fitness 206

5.2 Selection in Diploid Organisms 206
- Change in Allele Frequency in Diploids 208
- Marginal Fitness and Selection with Multiple Alleles 212
- Application to the Evolution of Insecticide Resistance 215

5.3 Equilibria with Selection 215
- Overdominance 216
- Local Stability 220
- Heterozygote Inferiority 222
- Stable Equilibria with Multiple Alleles 223
- Adaptive Topography and the Role of Random Genetic Drift 225

5.4 Mutation-Selection Balance 226
- Equilibrium Allele Frequencies 226
- The Haldane-Muller Principle 228

5.5 More Complex Types of Selection 229
- Differential Selection in the Sexes 229
- X-Linked Genes 230
- Frequency-Dependent Selection 230
- Density-Dependent Selection 231
- Fecundity Selection 231
- Age-Structured Populations 232
- Heterogenous Environments and Clines 232
- Diversifying Selection 234
- Gametic Selection 236
- Meiotic Drive 236
- Multiple Loci and Gene Interaction: Epistasis 239
- Evolution of Recombination Rate 241
- Sexual Selection 241
- Kin Selection 243

5.6 Interdemo Selection in Geographically Subdivided Populations 245

5.7 Selection in a Finite Population 248
- Weak Selection and the Nearly Neutral Theory 248
- Genetic "Draft" 251

6 Inbreeding, Population Subdivision, and Migration 257

6.1 Inbreeding 257
- The Inbreeding Coefficient 258
- Genotype Frequencies with Inbreeding 259
- Genetic Effects of Inbreeding 265
- Calculation of the Inbreeding Coefficient from Pedigrees 268
- Regular Systems of Mating 272

6.2 Population Subdivision 275
- Reduction in Heterozygosity Due to Population Subdivision 276
- Average Heterozygosity 278
- Wright's F Statistics 281
- Linanthus Revisited: Evidence for Selection Associated with Flower Color 285
7 Molecular Population Genetics 317

7.1 The Neutral Theory and Molecular Evolution 318
Theoretical Principles of the Neutral Theory 318

7.2 Estimating Rates of Molecular Sequence Divergence 321
Rates of Amino Acid Replacement 322
Rates of Nucleotide Substitution 326
Statistical Fitting of Nucleotide Substitution Models 329

7.3 The Molecular Clock 329
Variation among Genes in the Rate of the Molecular Clock 332
Variation across Lineages in Clock Rate 334
The Generation-Time Effect 337
The Overdispersed Molecular Clock and the Neutral Theory 338
The Nearly Neutral Theory 339

7.4 Patterns of Nucleotide and Amino Acid Substitution 340
Calculating Synonymous and Nonsynonymous Substitution Rates 340
Codon Substitution Models 343
Observations of Synonymous and Nonsynonymous Substitution Rates 345
Polymorphism within Species 347
Implications of Codon Usage Bias 349

7.5 Polymorphism and Divergence in Nucleotide Sequence—The McDonald-Kreitman and HKA Tests 351
Polymorphism and Divergence in Noncoding Sequences 354
Impact of Local Recombination Rates 354
Substitution Models for Structural RNA Genes 356

7.6 Gene Genealogies 358
Hypothesis Testing Using Trees 358

7.7 Mitochondrial and Chloroplast DNA Evolution 362
Chloroplast DNA and Organelle Transmission in Plants 363
Maintenance of Variation in Organelle Genomes 364
Evidence for Selection in mtDNA 365

7.8 Molecular Phylogenetics 366
Algorithms for Phylogenetic Tree Reconstruction 366
Distance Methods versus Parsimony 369
Bootstrapping and Statistical Confidence in a Tree 370
Bayesian Methods 370
Trans-Species Polymorphism 371

7.9 Multigene Families 372
Concerted Evolution 374
Subfunctionalization 375
Birth-and-Death Process 376
8 Evolutionary Quantitative Genetics 385

8.1 Types of Quantitative Traits 387
8.2 Resemblance Between Relatives and the Concept of Heritability 388
8.3 Artificial Selection and Realized Heritability 394
 Contribution of New Mutations to the Response to Selection 396
 Prediction Equation for Individual Selection 397
 Limits to Selection 400
8.4 Genetic Models for Quantitative Traits 403
 Change in Allele Frequency 412
 Change in Mean Phenotype 413
 Linearity of Response 415
8.5 Components of Phenotypic Variance 416
 Genetic and Environmental Sources of Variation 416
 Components of Genotypic Variation 422
8.6 Covariance Among Relatives 426
 Twin Studies and Inferences of Heritability in Humans 430
 Estimation of Genetic Variance Components in Natural Populations 432
8.7 Norm of Reaction, Threshold Traits, and Genetic Correlation 433
 Norm of Reaction and Phenotypic Plasticity 433
 Threshold Traits: Genes as Risk Factors in Disease 437
 Genetic Correlation and Correlated Response 439
8.8 Evolutionary Quantitative Genetics 443
 Inference of Selection from Phenotypic Data 443
 Evolution of Multiple Intercorrelated Traits 444
 Random Genetic Drift and Phenotypic Evolution 446
 Mutational Variance and Mutation-Accumulation Experiments 448
 Mutation-Selection Balance for Quantitative Traits 449
8.9 Genes That Affect Quantitative Traits 452
 The Number of Genes Affecting Quantitative Traits 453
 Methods for Mapping QTLs 455

9 Population Genomics 469

9.1 Evolution of Genome Size and Composition 470
 Organismic Complexity and the C-Value Paradox 470
 Base Composition of Genomic DNA 471
9.2 Genome-Wide Patterns of Polymorphism 473
 Excess Polymorphism in Subtelomeric Regions 473
 Polymorphism and Rates of Recombination 475
 Hitchhiking versus Background Selection 477
 Linkage Disequilibrium and Haplotype Structures 481
 Decline of Linkage Disequilibrium with Genetic Distance 483
9.3 Differences Between Species 484
 Comparison of Nonsynonymous and Synonymous Divergence 484
 Positive Selection 486
 Exploiting a Phylogenetic Signal 487
 Polymorphism and Divergence 487
 Compensated Pathogenic Deviations 489
 Structure-Function Analysis 491
9.4 Sexual Selection and the Sex Chromosomes 492
 Faster-Male Molecular Evolution 493
10 HUMAN POPULATION GENETICS 519

10.1 HUMAN POLYMORPHISM 520
Public SNP Resources and the HapMap Project 521

10.2 POPULATION GENETIC INFERENCEs FROM HUMAN SNPs 524
Ascertainment Bias of SNP Genotypes 524
Departures from Hardy-Weinberg Frequencies 527
Site Frequency Spectrum and Human Population Growth 527
Rooting Human Polymorphism 529
Inference of Inhomogeneities in the Mutation Process 530
Inferences about Male and Female Mutation Rates 531

10.3 LINKAGE DISEQUILIBRIUM ACROSS THE HUMAN GENOME 532
The Landscape of Human Linkage Disequilibrium 532
Inferences about Local Rates of Recombination 537

10.4 POPULATION STRUCTURE INFERRED FROM HUMAN POLYMORPHISM 539
Multilocus Methods of Inference of Stratification 540
Heterogeneity in Linkage Disequilibrium across Human Populations 542

10.5 MENDELIAN DISEASE AND POPULATION GENETICS 547
Mutation-Selection Balance 548
Dating the Origin of Mutant Alleles 548

10.6 GENETIC BASIS FOR VARIATION IN RISK OF COMPLEX DISEASE 550
Mapping Methods Based on Linkage 550
Linkage Disequilibrium Mapping 552
Genome-Wide Association Studies 553

10.7 SEEKING SIGNATURES OF HUMAN-SPECIFIC GENETIC ADAPTATIONS 554
Interspecific Divergence 554
McDonald-Kreitman and Poisson Random Field Tests 555
Local Distortions in Linkage Disequilibrium 556
FST Tests 557
Genome Scans for Selection-Skewed Site Frequency Spectrum 557

10.8 HUMAN ORIGINS 558
Neanderthal Genome Sequence 562

ANSWERS TO CHAPTER-END PROBLEMS 567
AUTHOR INDEX 629
BIBLIOGRAPHY 597
SUBJECT INDEX 635