Contents

List of Abbreviations XV

1 Introduction 1
contributed by M. Bier

1.1 Electrophoresis 1
1.2 Importance of Electrophoresis 2
1.3 The Kohlrausch-Hittorf Constraints and the Nature of Electrophoretic Boundaries 4
1.4 Classification of Electrophoretic Processes 6
1.5 Reader's Guide – Book Overview 9
1.6 References 10

2 The Theory of Electrophoretic Separations 11
D.A. Saville

2.0 Introduction 11
2.1 The Gouy-Chapman Theory of the Electric Double-Layer 12
2.2 The Electrophoretic Mobility of Macroions and Particles 15
2.3 Electroosmosis 18
2.4 Ion Mobility and Electrical Conduction in Liquids 19
2.4.1 Current Carried by Small Ions 20
2.4.2 Current Carried by Proteins 21
2.5 The General Theory 23
2.5.1 Basic Principles 23
2.5.2 Chemical Reactions 24
2.5.3 Conservation Relations 27
2.5.4 Scale Analysis 28
2.5.5 The Simplified Model in Dimensionless Form 30
2.5.6 Boundary Conditions 32
2.6 Application of the Model to Steady State Boundary Migration 34
2.6.1 Analysis of a Three-Component System 35
2.6.2 Boundary Structure for the Fully Ionized Three-Component System 38
2.6.3 Analysis of a System with Two Boundaries 39
2.6.4 Boundary Structure with Partially Ionized Solutes 42
Contents

2.6.5 Regulating Functions for Weak Electrolytes 47
2.7 The Effects of Electroosmosis on the Structure of an Isotachophoretic Boundary 48
2.8 Numerical Implementation of the Model 53
2.8.1 Reformulation of the Mathematical Model 54
2.8.2 Numerical Treatment of the Partial Differential Equations 57
2.9 A Model for the Electrophoresis of Proteins 60
2.10 Concluding Remarks Concerning the Theory 65
2.11 Nomenclature 66
2.12 References 69

3 Introduction to Computer Modeling and Experimental Validation 71

R. A. Mosher and W. Thormann

3.1 Computer Simulation 71
3.1.1 Introduction 71
3.1.2 The Simplified Mathematical Model for Low Molecular Mass Components 72
3.1.2.1 Mass Transport: The Flux Equation 72
3.1.2.2 The Assumption of Local Electroneutrality 73
3.1.2.3 The Treatment of Weak and Strong Acids and Bases 74
3.1.2.4 Conservation of Mass 75
3.1.2.5 Conservation of Charge 75
3.1.3 The Treatment of Proteins 75
3.1.3.1 Ionization Behavior 75
3.1.3.2 Mass Transport 76
3.1.3.3 Conservation of Charge and Conductivity 76
3.1.3.4 Local Electroneutrality 77
3.1.4 Performing a Simulation 77
3.1.4.1 Inputs Required 77
3.1.4.2 The Output 78
3.1.4.3 An Example 78
3.2 Monitoring the Dynamics of Electrophoretic Processes 81
3.2.1 Introduction 81
3.2.2 The Tachophor Apparatus 81
3.2.3 The CapScan Apparatus 82
3.2.4 The Elphor Vap 22 85
3.3 Discussion 87
3.4 References 88
4 Moving Boundary Electrophoresis 89
R.A. Mosher and W. Thormann

4.1 Introduction: Tiselius Moving Boundary Electrophoresis 89
4.2 The Moving Boundary Separation and Regulating Principles 91
4.3 Discussion 98
4.4 References 100

5 Zone Electrophoresis 103
W. Thormann and R.A. Mosher

5.1 Introduction: The Principle of Zone Electrophoresis 103
5.2 Sample Dynamics in Zone Electrophoresis 104
5.2.1 Migration Dynamics of One Sample Component 105
5.2.2 Separation Dynamics of Two Sample Components 108
5.2.3 Influence of Sample Composition and the Regulating Principle 112
5.2.4 Discontinuous Zone Electrophoresis 114
5.2.5 Migration Dynamics of a Protein Sample 119
5.3 Discussion 120
5.4 References 122

6 Isotachophoresis 125
W. Thormann and R.A. Mosher

6.1 Introduction: The Principle of Isotachophoresis 125
6.2 Characteristics of Isotachophoresis 129
6.2.1 The Concept of Mobility in Isotachophoresis 129
6.2.2 The Steady Isotachophoretic State 130
6.2.3 Requirements for Isotachophoresis 132
6.2.4 Separation of Two Components 133
6.2.5 Separation Capacity 134
6.2.6 Separability 135
6.3 Description of Isotachophoresis by Computer Modeling 137
6.3.1 The Discontinuous Electrolyte System for Isotachophoresis: The Leader/Terminator Backbone 137
6.3.2 Condensation of a Sample Constituent in a Moving Boundary: Establishment of an Isotachophoresis Zone 140
6.3.3 Illustration of the Regulating Principle 143
6.3.4 Dynamics of Multiple-Zone Isotachopherograms 145
6.3.5 The Isotachophoretic Behavior of Proteins 150
6.3.6 Sample Application, Impurities and Special Cases 156
6.4 Summary 158
6.5 References 159
List of Symbols 161

7 Isoelectric Focusing 163
R. A. Mosher and W. Thormann

7.1 Introduction 163
7.2 Acid-Base Chemistry of Ampholytes 164
7.3 Characteristics of Good Carrier Ampholytes 167
7.4 Fundamental Concepts 170
7.4.1 The Behavior of an Ampholyte in the Presence of a pH Gradient and an Electric Field 170
7.4.2 The Differential Equation of Isoelectric Focusing 171
7.5 Natural pH Gradients 172
7.5.1 Steady State Distributions of Two Idealized Ampholytes 173
7.5.2 Steady State Distributions of Real Compounds 177
7.5.3 The Mechanism of Natural pH Gradient Formation 182
7.5.4 The Impact of Poor Ampholytes and Weak Electrolytes 189
7.5.5 Conditions for a Stepless pH Course 192
7.5.6 Are pH Gradients Always Monotonic? 193
7.6 Instabilities Associated with Natural pH Gradients 194
7.6.1 The Plateau Phenomenon 194
7.6.2 pH Gradient Drifts 196
7.6.2.1 Cathodic Drift 196
7.6.2.2 Anodic Drift 202
7.6.2.3 Symmetrical Drift 204
7.6.2.4 Experimentally Observed Drifts 207
7.7 pH Gradients Formed with Nonamphoteric Buffers 208
7.7.1 Systems in Free Solution 209
7.7.2 Immobilized pH Gradients 217
7.8 The Isoelectric Focusing of Proteins in Natural pH Gradients 221
7.8.1 Two Component Systems 221
7.8.2 The Glutamic Acid/Histidine/Arginine System 221
7.8.3 The Glutamic Acid/Cycloserine/Arginine System 224
7.8.4 More Complex Systems 226
7.9 Summary 228
7.10 References 229
List of Symbols 231

Index 233