G. Michael Schneider
Macalester College, St. Paul, MN

Co-authors of the first edition:
Steven W. Weingart
Data General Corporation
David M. Perlman
Cray Research

Second Edition
AN INTRODUCTION TO PROGRAMMING AND PROBLEM SOLVING WITH PASCAL

John Wiley & Sons
New York Chichester Brisbane Toronto Singapore
CONTENTS

STYLE CLINICS xii

CHAPTER 1
AN INTRODUCTION TO
COMPUTER PROGRAMMING 1
1.1 Introduction 1
1.2 The Steps Involved in Computer Programming 2
1.3 The Problem Definition Phase 6
1.4 Examples 9
 1.4.1 Table Look-Up 9
 1.4.2 Statistical Comparisons 13
1.5 Conclusion 15

CHAPTER 2
ALGORITHMS 19

2.1 Introduction 19
2.2 Developing Algorithms 23
 2.2.1 Example One—Table Look-Up 23
 2.2.2 Example Two—A Better Table Look-Up 38
2.2.3 Example Three—Averaging 44
2.2.4 Example Four—Words, Words, Words 45
2.3 The Efficiency of Algorithms 50
2.4 Conclusion 58

CHAPTER 3
BASIC PASCAL DATA TYPES
AND DECLARATIONS 67
3.1 Introduction 67
3.2 The Concept of Data Types 68
3.3 The Standard Scalar Data Types 68
 3.3.1 Integers 68
 3.3.2 Reals 70
 3.3.3 Characters 72
 3.3.4 Boolean 75
 3.3.5 The Const Declaration 78
3.4 Additional Scalar Data Types 79
 3.4.1 User-Defined Scalar Data Types 79
 3.4.2 Scalar Subrange Data Types 83
3.5 Names in Pascal 84
3.6 Scalar Variables 86
3.7 Conclusion 90

CHAPTER 4
ELEMENTARY PASCAL
PROGRAMMING 95
4.1 Arithmetic Expressions 95
4.2 Use of Standard Functions 100
4.3 Boolean Expressions 100
4.4 The Assignment Statement 104
4.5 Input and Output 106
 4.5.1 Read and Readln Statements 107
 4.5.2 Reading in Text 114
 4.5.3 Write and Writeln Statements 116
4.6 The Overall Structure of a Pascal Program 122
4.7 Examples of Programs 127
4.8 Running a Program 129

CHAPTER 5
THE FLOW OF CONTROL 141
5.1 Introduction 141
5.2 The Compound Statement 142
5.3 Iterative Statements 143
 5.3.1 The While Statement 143
 5.3.2 The Repeat Statement 147
 5.3.3 The For Statement 155
5.4 Conditional Statements 160
 5.4.1 The If Then Construct 161
 5.4.2 The If Then Else Construct 164
 5.4.3 The Case Statement 170
5.5 Unconditional Branching 176
 5.5.1 Statement Labels 176
 5.5.2 The Goto Statement 177
5.6 Case Study—Root Finding 184

CHAPTER 6
RUNNING, DEBUGGING, AND TESTING PROGRAMS 201
6.1 Introduction 201
6.2 Processing the Program 201
6.3 Debugging 204
 6.3.1 Syntax Errors 206
 6.3.2 Run-Time Errors 210
 6.3.3 Logic Errors 213
6.4 Program Testing 220
6.5 Documentation and Maintenance 225
6.6 Conclusion 229

CHAPTER 7
STRUCTURED DATA TYPES—ARRAYS 235
7.1 Introduction 235
7.2 Arrays 237
7.3 Multidimensional Arrays 243
7.4 Case Study—Encryption/Decryption 254

CHAPTER 8
FUNCTIONS AND PROCEDURES 267
8.1 Introduction 267
8.2 Functions 272
 8.2.1 Function Declaration 272
 8.2.2 Invoking a Function 273
8.3 Procedures 278
8.4 Parameters 282
8.5 Block Structure 288
8.6 Functions and Procedures as Parameters 295
8.7 Recursion 299
8.8 External Subprograms 303
8.9 Case Study—Payrolls 305

CHAPTER 9
MORE STRUCTURED DATA TYPES—RECORDS AND SETS 321
9.1 Introduction 321
9.2 Records 321
 9.2.1 Simple Record Structures 321
 9.2.2 Hierarchical Record Structures 326
 9.2.3 Record Variants 330
9.3 Sets 332
9.4 Case Study—The Game of Life 340

CHAPTER 10
MORE STRUCTURED DATA TYPES—FILES AND POINTERS 359
10.1 Files 359
 10.1.1 Introduction 359
 10.1.2 Creating and Using Files 361
 10.1.3 Textfiles 366
10.2 Pointers 371
10.3 Case Study—Matrix Representations 380

CHAPTER 11
PROGRAM DESIGN METHODS 395
11.1 Introduction 395
11.2 Top-Down Modular Programming 397
11.3 Case Study 401
11.4 The Ultimate Measure of Computer Programs 412
11.5 Conclusion 415