Tunnelling in Weak Rocks

Bhawani Singh
Professor (Retd),
IIT Roorkee

Rajnish K. Goel
Scientist F
CMRI Regional Centre
Roorkee, India

Geo-Engineering Book Series Editor
John A. Hudson FREng
Imperial College of Science, Technology and Medicine,
University of London, UK

2006
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Series Preface</td>
<td>v</td>
<td></td>
</tr>
<tr>
<td>Preface</td>
<td>vii</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>Application of geophysics in tunnelling and site survey activities</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Geophysical exploration</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Examples of application</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>Prediction ahead of tunnel face with source placed on face</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Application to construction site</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>22</td>
</tr>
<tr>
<td>3</td>
<td>Terzaghi's rock load theory</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>Introduction</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>Rock classes</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>Rock load factor</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>Modified Terzaghi's theory for tunnels and caverns</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>35</td>
</tr>
<tr>
<td>4</td>
<td>Rock mass rating (RMR)</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>Introduction</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>Collection of field data</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td>Estimation of rock mass rating</td>
<td>41</td>
</tr>
<tr>
<td></td>
<td>Applications of RMR</td>
<td>43</td>
</tr>
<tr>
<td></td>
<td>Precautions</td>
<td>47</td>
</tr>
<tr>
<td></td>
<td>Tunnel alignment</td>
<td>49</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>49</td>
</tr>
<tr>
<td>5</td>
<td>Rock mass quality Q</td>
<td>51</td>
</tr>
<tr>
<td></td>
<td>The Q-system</td>
<td>51</td>
</tr>
<tr>
<td></td>
<td>The joint orientation and the Q-system</td>
<td>58</td>
</tr>
</tbody>
</table>
Contents

5.3 Updating the Q-system
5.4 Collection of field data
5.5 Classification of the rock mass
5.6 Estimation of support pressure
5.7 Unsupported span
5.8 Rock mass characterization
5.9 Concluding remarks

References 74

6 Rock mass number

6.1 Introduction 77
6.2 Interrelation between Q and RMR 78
6.3 Prediction of ground conditions 81
6.4 Prediction of support pressure 81
6.5 Effect of tunnel size on support pressure 82
6.6 Correlations for estimating tunnel closure 85
6.7 Effect of tunnel depth on support pressure and closure in tunnels 86
6.8 Approach for obtaining ground reaction curve (GRC) 86

References 88

7 Strength of discontinuities

7.1 Introduction 91
7.2 Joint wall roughness coefficient (JRC) 92
7.3 Joint wall compressive strength (JCS) 95
7.4 Joint matching coefficient (JMC) 96
7.5 Residual angle of friction 97
7.6 Shear strength of joints 97
7.7 Dynamic shear strength of rough rock joints 99
7.8 Theory of shear strength at very high confining stress 99
7.9 Normal and shear stiffness of rock joints 101

References 101

8 Strength enhancement of rock mass in tunnels

8.1 Causes of strength enhancement 103
8.2 Effect of intermediate principal stress on tangential stress at failure in tunnels 104
8.3 Uniaxial compressive strength of rock mass 106
8.4 Reason for strength enhancement in tunnels and a new failure theory 108
8.5 Critical strain of rock mass 111
8.6 Criterion for squeezing/rock burst of rock masses 113
8.7 Tensile strength across discontinuous joints 114
8.8 Dynamic strength of rock mass 115
8.9 Residual strength parameters 116
References 116

9 The new Austrian tunnelling method 119
9.1 Old tunnelling practice 119
9.2 Development of construction and lining methods 120
9.3 Modern tunnelling methods 120
9.4 Temporary supports 121
9.5 Philosophy of NATM 124
9.6 Final dimensioning by measurement 128
9.7 Concluding remarks 130
References 132

10 Norwegian method of tunnelling 133
10.1 Introduction 133
10.2 Unsupported span 134
10.3 Design of supports 135
10.4 Design of steel fiber reinforced shotcrete 136
10.5 Drainage measures 148
10.6 Experiences in poor rock conditions 148
10.7 Concluding remarks 149
References 150

11 Blasting for tunnels and roadways 151
11.1 Introduction 151
11.2 Blasting mechanics 152
11.3 Blast holes nomenclature 153
11.4 Types of cut 154
11.5 Tunnel blast performance 156
11.6 Parameters influencing tunnel blast results 156
11.7 Models for prediction of tunnel blast results 162
11.8 Blast design 167
References 177

12 Rock bolting 183
12.1 General 183
12.2 Types of rock bolts 183
12.3 Selection of rock bolts 188
12.4 Installation of rock bolts 190
12.5 Pull-out tests 192
12.6 Reinforcement of jointed rock mass around openings 195
16.3 Penetration and advance rates 253
16.4 Cutter wear 253
16.5 Penetration and advance rate vs Q_{TBM} 254
16.6 Estimating time for completion 254
References 255

17 Metro tunnels 257
17.1 Introduction 257
17.2 Shielded tunnel boring machines 260
17.3 Precast lining 262
17.4 Building condition survey and vibration limit 263
17.5 Impact on the structures 263
17.6 Subsidence 265
17.7 Portal and cut slopes 265
References 266

18 Tunnelling in swelling rocks 269
18.1 Introduction 269
18.2 Support pressures in swelling ground 270
18.3 Variation of support pressure with time 272
18.4 Case histories 274
18.5 Design approach 276
References 276

19 Tunnelling through squeezing ground condition 279
19.1 Introduction 279
19.2 Criterion for squeezing ground condition 280
19.3 Elasto-plastic theory of squeezing ground 281
19.4 Displacements of tunnel walls 282
19.5 Compaction zone within broken zone 284
19.6 Face advance for stabilization of broken zone 285
19.7 Ground response curve 285
19.8 Strain criterion of squeezing ground condition 288
19.9 Support design 291
References 292

20 Case history of tunnel in squeezing ground 295
20.1 Introduction 295
20.2 Regional geology, tunnelling problems and alternative layouts 295
20.3 Tectonic activity and tunnel lining 303
20.4 Tunnel construction and instrumentation in the intra-thrust zone at Kalawar 306
Contents

20.5 Tunnel construction and instrumentation in intra-thrust zone at Chhibro
20.6 Elasto-plastic theory
20.7 Conclusions
References

21 Tunnels in seismic areas
21.1 Introduction
21.2 Response of an underground structure to dynamic loading
21.3 Observed response
21.4 Case history of 1991 Uttarkashi earthquake
21.5 Pseudo-static theory of seismic support pressure
21.6 Support system for blast loading
References

22 Rock burst in tunnels
22.1 Introduction
22.2 Conditions for rock burst in deep tunnels
22.3 Concept of strain energy release rate
22.4 Seismic energy released in a rock burst
22.5 Semi-empirical criterion of predicting rock burst
22.6 Suggestion for reducing severity of rock bursts
References

23 Pressure tunnels
23.1 Introduction
23.2 Minimum overburden above a pressure tunnel
23.3 Solid concrete lining
23.4 Cracked plain cement concrete lining
23.5 Steel liner in penstock
23.6 Hydraulic fracturing near junction of pressure tunnel and penstock
References

24 Shafts
24.1 Introduction
24.2 Shapes of shaft
24.3 Self-supporting shaft
24.4 Support pressures on the wall of shaft
24.5 Design of support system
24.6 Surge shaft
24.7 Excavation 361
24.8 Self-compacting concrete 362
References 363

25 Half tunnels 365
25.1 Introduction 365
25.2 Application of rock mass classification 365
25.3 Wedge analysis 366
25.4 Stress distribution around half tunnel 372
References 373

26 Contractual risk sharing 375
26.1 The risk 375
26.2 Management of risk 379
26.3 Construction planning and risk 385
26.4 Time and cost estimates 386
References 386

27 Rate of tunnelling 389
27.1 Introduction 389
27.2 Classification of ground/job conditions for rate of tunnelling 390
27.3 Classification of management conditions for rate of tunnelling 390
27.4 Combined effect of ground and management conditions on rate of tunnelling 392
27.5 Tunnel management 397
27.6 Poor tender specifications 398
27.7 Contracting practice 399
27.8 Quality management by International Tunnelling Association 400
References 401

28 Integrated method of tunnelling 403
28.1 Introduction 403
28.2 Probe holes 404
28.3 Effect of seismicity 404
28.4 Tunnel instrumentation 404
28.5 Selection of type of support system 405
28.6 Steel fiber reinforced shotcrete 406
28.7 Treatment of shear zone 411
28.8 Shotcrete 412
28.9 Rock/roof bolts 414
28.10 Steel ribs 418
28.11 Grouting in pressure tunnels 429
28.12 Design of integrated support system 433
28.13 Special requirements 439
References 442

29 Critical state rock mechanics and its applications 443
29.1 General 443
29.2 Suggested model for rock mass 445
29.3 Residual strength 449
29.4 Effect of confining pressure on friction angle 452
References 452

Appendix I Tunnel mechanics 455
A1.1 Elastic stress distribution around circular tunnels 455
A1.2 Proposed elasto-plastic theory of stress distribution in broken zone in squeezing ground 459
A1.3 Short-term support pressure on closely spaced tunnels in squeezing ground condition 462
A1.4 Seismic support pressures 465
References 465

Appendix II Software TM for empirical design of support system for caverns and tunnels 467
AII.1 General 467
AII.2 Software TM 468
AII.3 Experience in poor rock conditions 469
AII.4 Concluding remarks 471
AII.5 Users manual – TM 471
References 475

Appendix III Capacity of blocked steel beam sections in the roof of tunnel 477
References 480

Index 481