BASIC ENGINEERING

PLASTICITY

An Introduction with Engineering and Manufacturing Applications

D. W. A. Rees

School of Engineering and Design,
Brunel University, UK
CONTENTS

Preface xi
Acknowledgements xii
List of Symbols xiii

CHAPTER 1
STRESS ANALYSIS

1.1 Introduction 1
1.2 Cauchy Definition of Stress 4
1.3 Three Dimensional Stress Analysis 7
1.4 Principal Stresses and Invariants 15
1.5 Principal Stresses as Co-ordinates 21
1.6 Alternative Stress Definitions 27
Bibliography 31
Exercises 31

CHAPTER 2
STRAIN ANALYSIS

2.1 Introduction 33
2.2 Infinitesimal Strain Tensor 33
2.3 Large Strain Definitions 40
2.4 Finite Strain Tensors 47
2.5 Polar Decomposition 58
2.6 Strain Definitions 62
References 62
Exercises 63
CHAPTER 3

YIELD CRITERIA

3.1 Introduction 65
3.2 Yielding of Ductile Isotropic Materials 65
3.3 Experimental Verification 71
3.4 Anisotropic Yielding in Polycrystals 83
3.5 Choice of Yield Function 90
References 91
Exercises 93

CHAPTER 4

NON-HARDENING PLASTICITY

4.1 Introduction 95
4.2 Classical Theories of Plasticity 95
4.3 Application of Classical Theory to Uniform Stress States 98
4.4 Application of Classical Theory to Non-Uniform Stress States 111
4.5 Hencky versus Prandtl-Reuss 123
References 124
Exercises 124

CHAPTER 5

ELASTIC-PERFECT PLASTICITY

5.1 Introduction 127
5.2 Elastic-Plastic Bending of Beams 127
5.3 Elastic-Plastic Torsion 137
5.4 Thick-Walled, Pressurised Cylinder with Closed-Ends 144
5.5 Open-Ended Cylinder and Thin Disc Under Pressure 149
5.6 Rotating Disc 154
References 159
Exercises 159
CHAPTER 14

PRODUCTION PROCESSES

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.1 Introduction</td>
<td>439</td>
</tr>
<tr>
<td>14.2 Hot Forging</td>
<td>439</td>
</tr>
<tr>
<td>14.3 Cold Forging</td>
<td>442</td>
</tr>
<tr>
<td>14.4 Extrusion</td>
<td>444</td>
</tr>
<tr>
<td>14.5 Hot Rolling</td>
<td>448</td>
</tr>
<tr>
<td>14.6 Cold Rolling</td>
<td>454</td>
</tr>
<tr>
<td>14.7 Wire and Strip Drawing</td>
<td>457</td>
</tr>
<tr>
<td>14.8 Orthogonal Machining</td>
<td>461</td>
</tr>
<tr>
<td>14.9 Concluding Remarks</td>
<td>475</td>
</tr>
<tr>
<td>References</td>
<td>475</td>
</tr>
<tr>
<td>Exercises</td>
<td>475</td>
</tr>
</tbody>
</table>

CHAPTER 15

APPLICATIONS OF FINITE ELEMENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.1 Introduction</td>
<td>479</td>
</tr>
<tr>
<td>15.2 Elastic Stiffness Matrix</td>
<td>479</td>
</tr>
<tr>
<td>15.3 Energy Methods</td>
<td>482</td>
</tr>
<tr>
<td>15.4 Plane Triangular Element</td>
<td>484</td>
</tr>
<tr>
<td>15.5 Elastic-Plastic Stiffness Matrix</td>
<td>490</td>
</tr>
<tr>
<td>15.6 FE Simulations</td>
<td>496</td>
</tr>
<tr>
<td>15.7 Concluding Remarks</td>
<td>502</td>
</tr>
<tr>
<td>References</td>
<td>503</td>
</tr>
<tr>
<td>Exercises</td>
<td>503</td>
</tr>
</tbody>
</table>

Index 505