Gernot Minke

Building with Earth
Design and Technology of a Sustainable Architecture

Birkhäuser – Publishers for Architecture
Basel · Berlin · Boston
Preface 7

1 The technology of earth building

1 Introduction 11

History 11
Earth as a building material: the essentials 13
Improving indoor climate 15
Prejudices against earth as a building material 18

2 The properties of earth as a building material 19

Composition 19
Tests used to analyse the composition of loam 21
Effects of water 24
Effects of vapour 29
Influence of heat 31
Strength 32
pH-value 35
Radioactivity 35
Shelter against high-frequency electromagnetic radiation 35

3 Preparing of loam 36

Soaking, crushing and mixing 36
Sieviving 38
Mechanical slurryng 38
Water Curing 38
Thinning 38

4 Improving the earth’s characteristics by special treatment or additives 39

Reduction of shrinkage cracks 39
Stabilisation against water erosion 40
Enhancement of binding force 42
Increasing compressive strength 43
Strength against abrasion 47
Increasing thermal insulation 47

5 Rammed earthworks 52

Formwork 53
Tools 54
Method of construction 55
Shaping of openings 55
New wall construction techniques 56
Rammed earth domes 59
Drying 59
Labour input 60
Thermal insulation 60
Surface treatment 60

6 Working with earthen blocks 61

History 61
Production of earth blocks 62
Material composition 65
Laying earth blocks 65
Surface treatment 66
Fixing fasteners to walls 67
Lightweight loam blocks 67
Special acoustic green bricks 68

7 Large blocks and prefabricated panels 69

Large blocks 69
Prefabricated wall panels 70
Floor slabs 70
Floor tiles 71
Extruded loam slabs 71

8 Direct forming with wet loam 72

Traditional wet loam techniques 72
The “Dünne loam loaf” technique 74
The stranglehm technique 75

9 Wet loam infill in skeleton structures 80

Thrown loam 80
Sprayed loam 80
Rolls and bottles of straw loam 81
Lightweight loam infill 82
Infill with stranglehm and earth-filled hoses 82

10 Tamped, poured or pumped lightweight loam 83

Formwork 83
Tamped lightweight straw loam walls 83
Tamped lightweight wood loam walls 84
Tamped, poured or pumped lightweight mineral loam walls 85
Pumped lightweight mineral loam floors 88
Loam-filled hollow blocks 89
Loam-filled hoses 90

11 Loam plasters 92

Preparation of ground 92
Composition of loam plaster 92
Guidelines for plastering earth walls 94
Sprayed plaster 95
Lightweight mineral loam plaster 95
Thrown plaster 95
Plastered straw bale houses 95
Wet formed plaster 96
Protection of corners 96
12 Weather protection of loam surfaces 98
Consolidating the surface 98
Paints 98
Making surfaces water-repellent 101
Lime plasters 101
Shingles, planks and other covers 103
Structural methods 103

13 Repair of loam components 104
The occurrence of damage in loam components 104
Repair of cracks and joints with loam fillers 104
Repair of cracks and joints with other fillers 105
Repairing larger areas of damage 105
Retrofitting thermal insulation with lightweight loam 106

14 Designs of particular building elements 107
Joints 107
Particular wall designs 108
Intermediate floors 110
Rammed earth floorings 112
Inclined roofs filled with lightweight loam 115
Earth-covered roofs 115
Earth block vaults and domes 117
Earthen storage wall in winter gardens 131
Loam in bathrooms 132
Built-in furniture and sanitary objects from loam 133
Wall heating systems 134
Passive solar wall heating system 134

15 Earthquake-resistant building 135
Structural measures 136
Openings for doors and windows 140
Bamboo-reinforced rammed earth walls 141
Domes 144
Vaults 145
Textile walls with loam infill 147

Residence and studio at Gallina Canyon, New Mexico, USA 162
Residence at Des Montes, near Taos, New Mexico, USA 164
Casita Nuanarpoq at Taos, New Mexico, USA 166
Residence and office at Bowen Mountain, New South Wales, Australia 167
Vineyard Residence at Mornington Peninsula, Victoria, Australia 168
Residence, Helensville, New Zealand 170
Residence, São Francisco Xavier, Brazil 172

Cultural, Educational and Sacral Buildings
Panafrican Institute for Development, Ouagadougou, Burkina Faso 174
Office building, New Delhi, India 176
School at Solvig, Järna, Sweden 178
Kindergarten, Sorsum, Germany 180
Cultural Centre, La Paz, Bolivia 182
Mosque, Wabern, Germany 183
Druk White Lotus School, Ladakh, India 184
Mii amo Spa at Sedona, Arizona, USA 186
Tourist resort at Baird Bay, Eyre Peninsula, South Australia 188
Charles Sturt University at Thurgowona, New South Wales, Australia 189
Youth Centre at Spandau, Berlin, Germany 190
Chapel of Reconciliation, Berlin, Germany 192
Center of Gravity Foundation Hall at Jemez Springs, New Mexico, USA 194

Future prospects 196
Measures 197
Bibliographical references 198
Acknowledgements 199
Illustration credits 199

II Built examples

Residences
Two semi-detached houses, Kassel, Germany 150
Residence cum office, Kassel, Germany 153
Farmhouse, Wazipur, India 156
Honey House at Moab, Utah, USA 157
Three-family house, Stein on the Rhine, Switzerland 158
Residence, La Paz, Bolivia 160
Residence, Turku, Finland 161