Quantum Paradoxes and Physical Reality

by
Franco Selleri
Dipartimento di Fisica,
Università di Bari, Italy

edited by
Alwyn van der Merwe
Department of Physics,
University of Denver, U.S.A.
Table of Contents

Preface

<table>
<thead>
<tr>
<th>Chapter 1 / Quantum Theorists and the Physical World</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1. Three Central Questions about Physics</td>
<td>1</td>
</tr>
<tr>
<td>1.2. The Older Generation</td>
<td>4</td>
</tr>
<tr>
<td>1.3. The Middle Generation</td>
<td>8</td>
</tr>
<tr>
<td>1.4. The Younger Generation</td>
<td>17</td>
</tr>
<tr>
<td>1.5. Conclusions</td>
<td>24</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 2 / Is Quantum Mechanics a Complete Theory?</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1. The Problem of Completeness and of Hidden Variables</td>
<td>33</td>
</tr>
<tr>
<td>2.2. De Broglie’s Paradox</td>
<td>36</td>
</tr>
<tr>
<td>2.3. The Spin-1/2 System in Quantum Mechanics</td>
<td>40</td>
</tr>
<tr>
<td>2.4. A Simple Proof of von Neumann’s Theorem</td>
<td>44</td>
</tr>
<tr>
<td>2.5. The Theorem is not General Enough</td>
<td>48</td>
</tr>
<tr>
<td>2.6. Von Neumann’s Theorem: Assumptions, Definitions, and Results</td>
<td>51</td>
</tr>
<tr>
<td>2.7. General Proof of von Neumann’s Theorem</td>
<td>54</td>
</tr>
<tr>
<td>2.8. Jauch and Piron’s Theorem</td>
<td>61</td>
</tr>
<tr>
<td>2.9. The Debate on Impossibility Proofs</td>
<td>69</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 3 / The Wave—Particle Duality</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1. Duality for Photons</td>
<td>73</td>
</tr>
<tr>
<td>3.2. Duality for Neutrons</td>
<td>77</td>
</tr>
<tr>
<td>3.3. Einstein’s Discovery of Duality</td>
<td>81</td>
</tr>
<tr>
<td>3.4. De Broglie’s Duality</td>
<td>86</td>
</tr>
<tr>
<td>3.5. Schrödinger’s Waves</td>
<td>92</td>
</tr>
<tr>
<td>3.6. Bohr’s Complementarity</td>
<td>97</td>
</tr>
<tr>
<td>3.7. Fock’s Relativity with Respect to the Means of Observation</td>
<td>103</td>
</tr>
<tr>
<td>3.8. Heisenberg Beyond Complementarity</td>
<td>107</td>
</tr>
<tr>
<td>3.9. The Consciousness Interpretation</td>
<td>111</td>
</tr>
<tr>
<td>3.10. Delayed Choices</td>
<td>114</td>
</tr>
<tr>
<td>3.11. How to do what Complementarity Forbids</td>
<td>118</td>
</tr>
</tbody>
</table>
Table of Contents

Chapter 4 / Properties of Quantum Waves 123
4.1. Quantum Waves and Quantum Potential 123
4.2. Experiments on the Nature of Duality 130
4.3. Stimulated Emission 137
4.4. Quantitative Empty Wave Amplification 144
4.5. Two Further Experimental Proposals 156
4.6. Triple-Slit Experiments 160
4.7. The Bohm—Aharonov Effect 167
4.8. Further Ideas about Wave—Particle Duality 171

Chapter 5 / The Einstein—Podolsky—Rosen Paradox 181
5.1. The Original Formulation 181
5.2. Bohr's Answer 187
5.3. Two Types of State Vectors 191
5.4. Spin States for Two Particles 197
5.5. Reality and Separability 200
5.6. The EPR Paradox: Quantum Mechanics Complete 204
5.7. The EPR Paradox: Quantum Mechanics not Complete 210
5.8. From Theory to Practice 216
5.9. The Experimental Information 226
5.10. Solution 1: Modifying the Past 235
5.11. Solution 2: Superluminal Connections 240
5.13. Solution 4: Modifications of Quantum Theory 254

Chapter 6 / The EPR Paradox in the Real World 264
6.1. Criticisms of Einstein Locality 264
6.2. Probabilistic Einstein Locality 269
6.3. New Proof of Bell's Inequality 276
6.4. Probabilities for Pairs of Correlated Systems 279
6.5. A New Factorizability Condition 285
6.6. All the Inequalities of Einstein Locality 290
6.7. Tests of the EPR Paradox in Particle Physics 302
6.8. On the Possibility of New Experiments 307
6.9. Variable Probabilities 310

Chapter 7 / Perspectives of Physical Realism 321
7.1. Objectivity of Scientific Knowledge 321
7.2. Mathematics and Reality 325
7.3. The Role of History of Physics 334
7.4. Fragmentation of Modern Physics 338
7.5. Niels Bohr and Philosophy 345
7.6. Quantum Physics and Biological Sciences 352
7.7. Forms of Physical Realism 356

Index 367