Fundamentals of Algebraic Graph Transformation

With 41 Figures
Contents

Part I Introduction to Graph Transformation Systems

1. **General Introduction** .. 5
 1.1 General Overview of Graph Grammars and Graph Transformation .. 5
 1.1.1 What Is Graph Transformation? 6
 1.1.2 Aims and Paradigms of Graph Transformation 6
 1.1.3 Overview of Various Approaches 9
 1.2 The Main Ideas of the Algebraic Graph Transformation Approach .. 10
 1.2.1 The DPO Approach ... 11
 1.2.2 The Algebraic Roots 12
 1.2.3 From the DPO to the SPO Approach 13
 1.2.4 From Graphs to High-Level Structures 14
 1.3 The Chapters of This Book and the Main Results 15
 1.3.1 Part I: Introduction to Graph Transformation Systems 15
 1.3.2 Part II: Adhesive HLR Categories and Systems 15
 1.3.3 Part III: Typed Attributed Graph Transformation Systems .. 16
 1.3.4 Part IV: Case Study and Tool Support 17
 1.3.5 Appendices .. 17
 1.3.6 Hints for Reading This Book 17
 1.4 Bibliographic Notes and Further Topics 17
 1.4.1 Concepts of Graph Grammars and Graph Transformation Systems .. 17
 1.4.2 Application Areas of Graph Transformation Systems ... 19
 1.4.3 Languages and Tools for Graph Transformation Systems 19
 1.4.4 Future Work ... 20
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Graphs, Typed Graphs, and the Gluing Construction</td>
<td>21</td>
</tr>
<tr>
<td>2.1</td>
<td>Graphs and Typed Graphs</td>
<td>21</td>
</tr>
<tr>
<td>2.2</td>
<td>Introduction to Categories</td>
<td>25</td>
</tr>
<tr>
<td>2.3</td>
<td>Pushouts as a Gluing Construction</td>
<td>29</td>
</tr>
<tr>
<td>2.4</td>
<td>Pullbacks as the Dual Construction of Pushouts</td>
<td>33</td>
</tr>
<tr>
<td>3</td>
<td>Graph Transformation Systems</td>
<td>37</td>
</tr>
<tr>
<td>3.1</td>
<td>Basic Definitions for GT Systems</td>
<td>37</td>
</tr>
<tr>
<td>3.2</td>
<td>Construction of Graph Transformations</td>
<td>43</td>
</tr>
<tr>
<td>3.3</td>
<td>Local Church–Rosser and Parallelism Theorems for GT Systems</td>
<td>47</td>
</tr>
<tr>
<td>3.4</td>
<td>Overview of Some Other Main Results for GT Systems</td>
<td>53</td>
</tr>
<tr>
<td>3.4.1</td>
<td>Concurrency Theorem</td>
<td>54</td>
</tr>
<tr>
<td>3.4.2</td>
<td>Embedding and Extension Theorems</td>
<td>56</td>
</tr>
<tr>
<td>3.4.3</td>
<td>Confluence, Local Confluence, Termination, and Critical Pairs</td>
<td>59</td>
</tr>
<tr>
<td>3.4.4</td>
<td>Functional Behavior of GT Systems and Termination Analysis</td>
<td>62</td>
</tr>
<tr>
<td>3.5</td>
<td>Graph Constraints and Application Conditions</td>
<td>64</td>
</tr>
</tbody>
</table>

Part II Adhesive High-Level Replacement Categories and Systems

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Adhesive High-Level Replacement Categories</td>
<td>77</td>
</tr>
<tr>
<td>4.1</td>
<td>Van Kampen Squares and Adhesive Categories</td>
<td>77</td>
</tr>
<tr>
<td>4.2</td>
<td>Adhesive HLR Categories</td>
<td>86</td>
</tr>
<tr>
<td>4.3</td>
<td>HLR Properties of Adhesive HLR Categories</td>
<td>96</td>
</tr>
<tr>
<td>5</td>
<td>Adhesive High-Level Replacement Systems</td>
<td>101</td>
</tr>
<tr>
<td>5.1</td>
<td>Basic Concepts of Adhesive HLR Systems</td>
<td>101</td>
</tr>
<tr>
<td>5.2</td>
<td>Instantiation of Adhesive HLR Systems</td>
<td>105</td>
</tr>
<tr>
<td>5.2.1</td>
<td>Graph and Typed Graph Transformation Systems</td>
<td>106</td>
</tr>
<tr>
<td>5.2.2</td>
<td>Hypergraph Transformation Systems</td>
<td>106</td>
</tr>
<tr>
<td>5.2.3</td>
<td>Petri Net Transformation Systems</td>
<td>107</td>
</tr>
<tr>
<td>5.2.4</td>
<td>Algebraic Specification Transformation Systems</td>
<td>108</td>
</tr>
<tr>
<td>5.2.5</td>
<td>Typed Attributed Graph Transformation Systems</td>
<td>108</td>
</tr>
<tr>
<td>5.3</td>
<td>The Local Church–Rosser and Parallelism Theorems</td>
<td>109</td>
</tr>
<tr>
<td>5.4</td>
<td>Concurrency Theorem and Pair Factorization</td>
<td>117</td>
</tr>
<tr>
<td>6</td>
<td>Embedding and Local Confluence</td>
<td>125</td>
</tr>
<tr>
<td>6.1</td>
<td>Initial Pushouts and the Gluing Condition</td>
<td>125</td>
</tr>
<tr>
<td>6.2</td>
<td>Embedding and Extension Theorems</td>
<td>130</td>
</tr>
<tr>
<td>6.3</td>
<td>Critical Pairs</td>
<td>140</td>
</tr>
<tr>
<td>6.4</td>
<td>Local Confluence Theorem</td>
<td>144</td>
</tr>
</tbody>
</table>
13 Typed Attributed Graph Transformation with Inheritance 259
 13.1 Attributed Type Graphs with Inheritance 260
 13.2 Attributed Clan Morphisms 265
 13.3 Productions and Attributed Graph Transformation with Inheritance 271
 13.4 Equivalence of Concepts with and without Inheritance 278

Part IV Case Study on Model Transformation, and Tool Support by AGG

14 Case Study on Model Transformation 287
 14.1 Model Transformation by Typed Attributed Graph Transformation 287
 14.2 Model Transformation from Statecharts to Petri Nets 288
 14.2.1 Source Modeling Language: Simple Version of UML Statecharts 289
 14.2.2 Target Modeling Language: Petri Nets 290
 14.2.3 Model Transformation 293
 14.2.4 Termination Analysis of the Model Transformation 301
 14.3 Further Case Studies 303
 14.3.1 From the General Resource Model to Petri Nets 303
 14.3.2 From Process Interaction Diagrams to Timed Petri Nets 304
 14.4 Conclusion 304

15 Implementation of Typed Attributed Graph Transformation by AGG 305
 15.1 Language Concepts of AGG 305
 15.1.1 Graphs 306
 15.1.2 Typing Facilities 306
 15.1.3 Node and Edge Attributes 307
 15.1.4 Rules and Matches 308
 15.1.5 Graph Transformations 310
 15.1.6 Graph Grammars 312
 15.2 Analysis Techniques Implemented in AGG 312
 15.2.1 Graph Constraints 312
 15.2.2 Critical Pair Analysis 313
 15.2.3 Graph Parsing 317
 15.2.4 Termination 318
 15.3 Tool Environment of AGG 318
 15.3.1 Visual Environment 320
 15.3.2 Graph Transformation Engine 321
 15.3.3 Tool Integration 322
 15.4 Conclusion 322
Appendices

A A Short Introduction to Category Theory 329
 A.1 Categories .. 329
 A.2 Construction of Categories, and Duality 330
 A.3 Monomorphisms, Epimorphisms, and Isomorphisms 332
 A.4 Pushouts and Pullbacks 334
 A.5 Binary Coproducts and Initial Objects 340
 A.6 Functors, Functor Categories, and Comma Categories 344
 A.7 Isomorphism and Equivalence of Categories 350

B A Short Introduction to Signatures and Algebras 353
 B.1 Algebraic Signatures .. 353
 B.2 Algebras .. 355
 B.3 Terms and Term Evaluation 357

C Detailed Proofs .. 359
 C.1 Completion of Proof of Fact 4.24 359
 C.2 Proof of Lemma 6.25 ... 361
 C.3 Completion of Proof of Theorem 11.3 362
 C.3.1 Well-Definedness 362
 C.3.2 Functors .. 364
 C.3.3 Isomorphism .. 365
 C.4 Proof of Lemma 11.17 366
 C.4.1 Well-Definedness 366
 C.4.2 Pushout Property 367
 C.4.3 Initial Pushout ... 368
 C.5 Proof of Theorem 13.12 370
 C.6 Proof of Lemma 13.20 373

References ... 377

Index .. 385