Three-Dimensional Elastic Bodies in Rolling Contact

by

J. J. KALKER

Department of Mathematics and Informatics,
TH Delft, The Netherlands

KLUWER ACADEMIC PUBLISHERS
DORDRECHT / BOSTON / LONDON
TABLE OF CONTENTS

Preface MIDI
Introduction XV
Notation XXI

CHAPTER 1 THE ROLLING CONTACT PROBLEM 1

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Statement of the problem</td>
<td>4</td>
</tr>
<tr>
<td>1.2</td>
<td>Mathematical modeling of the contact formation</td>
<td>6</td>
</tr>
<tr>
<td>1.3</td>
<td>Mathematical modeling of the slip</td>
<td>10</td>
</tr>
<tr>
<td>1.4</td>
<td>Mathematical modeling of friction</td>
<td>18</td>
</tr>
<tr>
<td>1.5</td>
<td>The complete boundary conditions</td>
<td>20</td>
</tr>
<tr>
<td>1.6</td>
<td>The half-space approximation</td>
<td>22</td>
</tr>
<tr>
<td>1.6.1</td>
<td>Many geometries are elastically alike</td>
<td>23</td>
</tr>
<tr>
<td>1.6.2</td>
<td>$A(x,y)$ may be calculated exactly</td>
<td>23</td>
</tr>
<tr>
<td>1.6.3</td>
<td>Quasiidentity is common in half-space problems</td>
<td>24</td>
</tr>
<tr>
<td>1.6.3.1</td>
<td>The Panagiotopoulos process</td>
<td>24</td>
</tr>
<tr>
<td>1.6.3.2</td>
<td>An Alternative to the Panagiotopoulos process (KOMBI)</td>
<td>24</td>
</tr>
<tr>
<td>1.6.3.3</td>
<td>The Johnson process</td>
<td>25</td>
</tr>
<tr>
<td>1.6.3.4</td>
<td>Symmetry and quasiidentity</td>
<td>25</td>
</tr>
<tr>
<td>1.6.3.5</td>
<td>Mindlin's method</td>
<td>28</td>
</tr>
<tr>
<td>1.6.4</td>
<td>Exact three-dimensional solutions of contact problems</td>
<td>28</td>
</tr>
<tr>
<td>1.7</td>
<td>Boundary conditions for some applications</td>
<td>28</td>
</tr>
<tr>
<td>1.7.1</td>
<td>The Hertz problem</td>
<td>28</td>
</tr>
<tr>
<td>1.7.2</td>
<td>Frictionless or quasiidentical contact formation for concentrated or semi-concentrated non-Hertzian contact</td>
<td>35</td>
</tr>
</tbody>
</table>
1.7.3 Frictional boundary conditions for bodies of revolution with the axes almost in one plane
1.7.3.1 Concentrated, e.g. Hertzian, geometry
1.7.3.2 A ball rolling in a conforming groove

CHAPTER 2 REVIEW

2.1 Frictionless contact
2.1.1 Element methods
 2.1.1.1 Fridman and Chernina
 2.1.1.2 Later authors
 2.1.1.3 Influence Function Methods for the half-space: choice of elements
 2.1.1.4 The accuracy of the elements
 2.1.1.5 Conclusion

2.2 Elastic rolling contact
 2.2.1 Carter and Fromm
 2.2.2 The no-slip theory of rolling contact
 2.2.2.1 Comparison of Johnson's spin theory with the exact values
 2.2.2.2 Comparison of Vermeulen and Johnson's no-spin theory with the exact values
 2.2.2.3 Calculation of the exact values of the C_{ij} by separating the variables in Laplace's equation
 2.2.2.4 Calculation on the basis of a generalisation of Galin's Theorem
 2.2.2.5 Strip theory/line contact theory
 2.2.2.6 IF methods for the half-space

2.2.3 Nonlinear, finite friction rolling contact
 2.2.3.1 Johnson and Vermeulen-Johnson
 2.2.3.2 Strip theory
 2.2.3.3 Simplified theory
 2.2.3.4 The first exact theory
 2.2.3.5 A linear programming method for the two-dimensional case
 2.2.3.6 Generalisation of the method of Sec. 2.2.3.5 to the three-dimensional case
 2.2.3.7 Duvaut-Lions based methods
4.3.6 Sensitivities 182
4.3.7 Calculation of the influence numbers in a half-space 183
4.3.8 The subsurface elastic field in a half-space 184
4.3.9 Note on the generalisation to non-concentrated contacts 184

CHAPTER 5 RESULTS 185

5.1 The normal contact problem 186
5.1.1 Validation (normal contact) 188
5.1.2 New results achieved by RNJLK and CC 193

5.2 Quasiidentical frictional contact problems 202
5.2.1 Validation 203
5.2.1.1 The Cattaneo shift 203
5.2.1.2 The Mindlin shift 205
5.2.1.3 The creepage and spin coefficients for steady state rolling 206
5.2.1.4 The theory of Vermeulen-Johnson on steady state rolling and its generalisations 207
5.2.1.5 The Vermeulen-Johnson theory and its generalisations: Validation 213
5.2.1.6 Brickle's experiments compared with CONTACT and FASTSIM 214

5.2.2 New results in Hertzian frictional rolling contact 215
5.2.2.1 The total tangential force 216
5.2.2.2 The areas of adhesion and slip 218
5.2.2.3 Surface tractions 219
5.2.2.4 Subsurface stresses 221
5.2.2.5 Transient rolling contact 224
5.2.2.6 Some remarks on corrugation 229

5.3 Non-quasiidentical frictional contact problems 231
5.3.1 Validation 231
5.3.2 New results 233
5.3.2.1 Unloading the Spence compression 233
5.3.2.2 Transition from the Spence compression to steady state rolling 235

CHAPTER 6 CONCLUSION 237

X
<table>
<thead>
<tr>
<th>Appendix A</th>
<th>The basic equations of the linear theory of elasticity</th>
<th>239</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appendix B</td>
<td>Some notions of mathematical programming</td>
<td>245</td>
</tr>
<tr>
<td>Appendix C</td>
<td>Numerical calculation of the elastic field in a half-space</td>
<td>255</td>
</tr>
<tr>
<td>Appendix D</td>
<td>Three-dimensional viscoelastic bodies in steady state frictional rolling contact with generalisation to contact perturbations</td>
<td>265</td>
</tr>
<tr>
<td>Appendix E</td>
<td>Tables</td>
<td>285</td>
</tr>
<tr>
<td>Bibliography</td>
<td></td>
<td>295</td>
</tr>
<tr>
<td>Index</td>
<td></td>
<td>307</td>
</tr>
</tbody>
</table>