Contents

5. Piezoelectric transducer vibration
 5.1 Extensional vibration of a bar with T-effect coupling 83
 5.2 Thickness longitudinal vibration of a plate with L-effect coupling 88
 5.3 Piezoelectric resonator equivalent circuit 94
 5.4 Mechanical excitation 98
 5.5 Radial, shear, and bending modes of vibration 100
 5.6 Various vibration modes and the distinction between T- and L-effects 107
 5.7 Mechanical conditions for the dielectric constant 113
 5.8 Coupling between two vibration modes 116

6. Mechanical and dielectric losses in a piezoelectric medium
 6.1 Phases of complex elastic and dielectric constants 119
 6.2 Losses in piezoelectric substances 121
 6.3 Attenuation of sound with infinite plane wave front 124
 6.4 Mechanical loss in a piezoelective vibrator 125
 6.5 Equivalent circuit and resonance stiffness 129
 6.6 Mechanical loss caused by electrical conduction 135

7. Electromechanical measurement of piezoelectric transducers
 7.1 Piezoelectric transducer admittance 138
 7.2 The resonance-antiresonance method 142
 7.3 Electromechanical coupling coefficient determination 146
 7.4 Mechanical loss measurement 150
 7.5 Correction of electromechanical parameters by minimum-to-maximum admittance ratio 153
 7.6 Poisson’s ratio determination in radial mode vibration 155
 7.7 L-effect coupling coefficient determination by overtone frequency measurement 157
 7.8 Elastic and piezoelectric constants measurement by the resonance method in various crystal systems 160
 7.9 Elastic measurement in nonpiezoelectric substances 164

8. Electromechanical interaction in solid-state physics
 8.1 Effect of higher-order coupling between strain and order parameter on elasticity 172
 8.2 Piezoelectricity and electrostriction 174
 8.3 Morphic effect: the symmetry superposition and the induced effect 178
Contents

8.4 Elastic dispersion and mechanical loss caused by electromechanical interaction 184
8.5 Electromechanical interaction in crystal optics 192
8.6 Crystallographic aspects of magnetoelastic interaction in ferromagnetic materials 197

9. Piezoelectric materials and electromechanical transducers 209
9.1 Electromechanical characteristics of materials 209
9.2 Outline of piezoelectric materials 210
9.3 Practical materials for piezoelectric transducers 225
9.4 Piezomagnetic and magnetostrictive materials 226
9.5 Aspects of transducers and resonators 230

Appendix
A.1 Orientation of crystals and Eulerian angles 241
A.2 Analysis of plane sound wave propagation based on the fundamental (S, P)-type relation 242
A.3 SH mode of guided waves propagated along a Y-cut plate with $6mm$ symmetry 243
A.4 Cylindrical coordinate expression of the fundamental relation for piezoelectric Z-cut ceramic plate 244
A.5 Thin square plate face-shear vibration 245
A.6 Dependence of resonant frequency on thickness in radial mode circular plate vibration 246
A.7 Bending vibration analysis of an asymmetric bimorph beam 246
A.8 Elastic and piezoelectric tensor component determination in various crystal systems 250
A.9 Tentative phenomenological treatment of piezoelectricity in improper ferroelectric crystals 254
A.10 Transfer admittance taking adhesive layers into account 257

Bibliography
259

Index
261