Modern structural analysis
Modelling process and guidance

Iain A. MacLeod
3 The modelling process

3.1 Overview of the modelling process
 3.1.1 General
 3.1.2 Representations of the modelling process
 3.1.3 Validation and verification
 3.1.4 Error and uncertainty

3.2 Defining the system to be modelled

3.3 The model development process
 3.3.1 Conceptual and computational models
 3.3.2 Model options

3.4 Validation of the analysis model
 3.4.1 Validation process
 3.4.2 Validating the conceptual model
 3.4.3 Validating the computational model

3.5 The solution process
 3.5.1 Selecting software
 3.5.2 Software validation and verification
 3.5.3 Truncation error, ill-conditioning

3.6 Verifying the results
 3.6.1 Acceptance criteria for results
 3.6.2 Verification process
 3.6.3 Checking models
 3.6.4 Checking loadcase

3.7 The modelling review
 3.7.1 Sensitivity analysis
 3.7.2 Overall acceptance of the results
 3.7.3 The modelling review document

3.8 Case studies
 3.8.1 The Tay Bridge disaster
 3.8.2 The Hartford Civic Center roof collapse
 3.8.3 The Sleipner platform collapse

4 Modelling with finite elements

4.1 Introduction

4.2 Elements
 4.2.1 Constitutive relationships
 4.2.2 Line elements
 4.2.3 Surface elements
CONTENTS

4.2.4 Volume elements 32
4.2.5 Joint elements 33
4.2.6 Basic principles for the derivation of finite element stiffness matrices 34

4.3 Mesh refinement 36
4.3.1 Discretisation error 36
4.3.2 Convergence 36
4.3.3 Singularities 37
4.3.4 Benchmark tests 38
4.3.5 Case study - mesh layouts for a cantilever bracket 38
4.3.6 Meshing principles 39

4.4 Case study – convergence analysis of a plane stress cantilever beam model 41
4.4.1 General 41
4.4.2 The context 41
4.4.3 Elements used in the convergence analysis 41
4.4.4 Reference solution 42
4.4.5 Convergence parameters 43
4.4.6 Meshes 44
4.4.7 Results 44
4.4.8 Overview 45

4.5 Constraints 46
4.5.1 General 46
4.5.2 Rigid constraint conditions 46
4.5.3 Constraint equations 47

4.6 Symmetry 48
4.6.1 General 48
4.6.2 Mirror symmetry 48
4.6.3 Symmetry checking 50

5 Skeletal frames – modelling with line elements 51

5.1 Introduction 51
5.1.1 Members and elements 52

5.2 Bending 52
5.2.1 Background 52
5.2.2 Behaviour 52
5.2.3 Basic relationships for bending 53
5.2.4 Symmetric and asymmetric bending 53
5.2.5 Shear in bending 54
5.2.6 Combined bending and shear 56
5.2.7 Validation information for the engineers’ theory of bending 56

5.3 Axial effects 58
5.3.1 Behaviour 58
5.3.2 Basic relationships 59
5.3.3 Validation information 59
CONTENTS

6 Plates in bending and slabs
6.1 Introduction 91
6.2 Plate bending elements
 6.2.1 Plate bending element basics 91
 6.2.2 Validation information for biaxial plate bending 92
 6.2.3 Output stresses and moments 92
 6.2.4 Checking models for plates in bending 94
6.3 Concrete slabs
 6.3.1 General 94
 6.3.2 Element models for slab analysis 94
 6.3.3 Reinforcing moments and forces for concrete slabs 95
 6.3.4 Plate bending and shell element models 95
 6.3.5 Shear lag effect 97
 6.3.6 Plate grillage models for concrete slabs 98
 6.3.7 Ribbed slabs 100
 6.3.8 Plastic collapse of concrete slabs – the yield line method 101

7 Material models
7.1 Introduction 103
7.2 Linear elastic behaviour
 7.2.1 General 103
 7.2.2 Types of elastic behaviour 104
 7.2.3 Values of elastic constants 104
 7.2.4 Validation information for linear elastic materials 105
7.3 Non-linear material behaviour
 7.3.1 Plasticity 106
 7.3.2 Other non-linear constitutive relationships 108

8 Support models
8.1 Introduction 109
8.2 Modelling support fixity
 8.2.1 General 109
 8.2.2 Support requirements 109
 8.2.3 Roller supports 110
 8.2.4 Pin supports 112
 8.2.5 Rotational restraint at a cantilever support 112
 8.2.6 Rotational restraints at column bases 113
 8.2.7 Slab supports 114
8.3 Modelling the ground
 8.3.1 General 114
 8.3.2 The Winkler model for soil behaviour 115
 8.3.3 Half space models 116
 8.3.4 Finite element models 117
8.4 Foundation structures
 8.4.1 Ground beams 118
9 Loading

9.1 Introduction
9.2 Dead loading
9.3 Live loading
9.4 Wind loading
9.5 Earthquake loading
9.6 Fire
9.7 Temperature
 9.7.1 General
 9.7.2 Basic relationships
9.8 Influence lines for moving loads
 9.8.1 General
 9.8.2 Basic concept
 9.8.3 Using influence lines
 9.8.4 Defining influence lines
 9.8.5 Validation information for the use of the Mueller-Breslau method for defining influence lines
9.9 Prestressing
9.10 Impact loading
 9.10.1 Gravity impact

10 Non-linear geometry

10.1 Introduction
 10.1.1 Basic behaviour
 10.1.2 Cantilever strut example – the P-Δ effect
10.2 Modelling for geometric non-linearity
 10.2.1 Using the non-linear geometry option in finite element packages
 10.2.2 Use of the critical load ratio magnification factor
 10.2.3 Case study – non-linear geometry analysis of a cantilever
 10.2.4 Validation information for non-linear geometry effects
10.3 Critical load analysis of skeletal frames
 10.3.1 The Euler critical load for single members
 10.3.2 Non-sway instability of a column in a frame
 10.3.3 The critical load ratio for an axially loaded member of a frame
 10.3.4 Estimation of critical loads using eigenvalue extraction
 10.3.5 Case study – eigenvalue analysis of a cantilever strut
10.4 Global critical load analysis of building structures
11 Dynamic behaviour

11.1 Introduction 134

11.2 Dynamic behaviour of a single mass and spring system 134
11.2.1 Governing equation 134
11.2.2 Validation information for equation (11.1) 135
11.2.3 Free undamped vibration 136
11.2.4 Damping 136

11.3 Multi-degree of freedom systems 137
11.3.1 Basic behaviour 137
11.3.2 Governing equation for multi-degree of freedom systems 138
11.3.3 Modelling for dynamic eigenvalue extraction 139
11.3.4 Verification of output for dynamic models 139

11.4 Resonance 139
11.4.1 Description 139
11.4.2 Systems subject to vibratory loading 140

11.5 Transient load 141

11.6 Checking models for natural frequencies 141
11.6.1 Single-span beams 141
11.6.2 The maximum deflection formula 141
11.6.3 Case study - use of equation (11.12) 142
11.6.4 Single mass and spring 142
11.6.5 Combinations of frequencies 143

12 Case studies

12.1 Case study 1 – vierendeel frame 144
12.1.1 General 144
12.1.2 Definition of the system to be modelled – the engineering model 144
12.1.3 Model development 144
12.1.4 The analysis model 146
12.1.5 Model validation 147
12.1.6 Results verification 147
12.1.7 Sensitivity analysis 153
12.1.8 Overall acceptance 155
12.1.9 Modelling review document 155

12.2 Case study 2 – four-storey building 155
12.2.1 General 155
12.2.2 Definition of the system to be modelled – the engineering model 155
12.2.3 Model development 157
12.2.4 Model validation 160
12.2.5 Results verification 162
12.2.6 Sensitivity analysis 169
12.2.7 Model review 170
Appendix – Tables of material and geometric properties 171
Bibliography 176
References 180
Index 183