Characterisation and final disposal behaviour of thoria-based fuel kernels in aqueous phases

Von der Fakultät für Georessourcen und Materialtechnik der Rheinisch-Westfälischen Technischen Hochschule Aachen

zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften

genehmigte Dissertation

vorgelegt von Ingenieur-Physiker

Maxim Titov

aus Krasnoyarsk, Rußland

Berichter: Univ.-Prof. Dr.rer.nat. Reinhard Odoj

Univ.-Prof. Dr.rer.nat. Rainer Telle

ULB Darmstadt

Tag der mündlichen Prüfung: 12. April 2005
A. Introduction and objectives

B. Statement of problem

B.1. Thorium dioxide: properties and nuclear applications
 B.1.1. Thorium
 B.1.2. Thorium dioxide
 B.1.3. Thoria-actinide oxide solid solutions
 B.1.4. Thorium fuel cycle
 B.1.5. Reactor experience with ThO$_2$ and (Th,U)O$_2$ fuels

B.2. HTR reactor
 B.2.1. Fuel kernels
 B.2.2. Coated particles
 B.2.3. HTR design and features

B.3. Final disposal of HTR spent fuel
 B.3.1. Spent fuel management
 B.3.2. Final disposal in deep geological formations
 B.3.3. Salt dome repository
 B.3.4. Accident scenario

B.4. Dissolution of thoria in aqueous phases
 B.4.1. Dissolution mechanism of oxides in aqueous phases
 B.4.2. Thermodynamic aspects of ThO$_2$ stability
 B.4.3. Special features of spent fuel leaching
 B.4.4. Dissolution and leaching
 B.4.5. Simulation of solid solution leaching by the Monte Carlo method

C. Experimental part

C.1. Techniques

C.2. Reagents and materials
 C.2.1. Preparation of salt brines

C.3. Experimental procedures
 C.3.1. Coated particle characterisation
 C.3.2. Kernel isolation
 C.3.3. Kernel characterisation
 C.3.4. Investigation of mechanical properties of oxide fuel kernels
 C.3.5. Preparation of thoria-urania powders
 C.3.6. Description of Monte Carlo simulation
C.4. Leaching experiments

C.4.1. Static and sequential kernel leaching experiments
C.4.2. Leaching experiments under γ-irradiation
C.4.3. Powder leaching experiments
C.4.4. Leaching experiments in acidic media

D. Results and Discussion

D.1. Characterisation of coated particles, kernels and powders
D.1.1. Coated particle structure
D.1.2. Properties of thorium-uranium mixed oxide fuel kernels
D.1.3. Characterisation of thorium-uranium powders

D.2. Mechanical properties of ceramic kernels
D.2.1. Hertzian indentation
D.2.2. Behaviour of ceramic kernels under uniaxial compression
D.2.3. Mechanism of kernel fracture under uniaxial compression
D.2.4. Kernel crushing strength distributions

D.3. Leaching behaviour of (Th,U)C₂ fuel kernels
D.3.1. Fuel kernel leaching in deionised water and salt brines
D.3.2. SEM investigations of leached kernels
D.3.3. Changes of kernel mechanical properties during leaching
D.3.4. Thorium-uranium powder leaching experiments
D.3.5. Dissolution of (Th,U)O₂ fuel kernels in hydrochloric acid
D.3.6. Comparison of dissolution rates in different aqueous media: effect of composition on material leachability
D.3.7. Fuel kernel leaching under γ-irradiation

D.4. Monte Carlo simulation of solid solution leaching
D.4.1. Dissolution kinetics of one-component system
D.4.2. Solid solution leaching

E. Summary and outlook

F. Acknowledgements

G. References

H. Appendix
H.1. Experimental schemes
H.2. XRD investigations
H.3. Leaching experiment data

H.3.1. Fuel kernel leaching in deionised water and salt brines

H.3.2. Evolution of kernel mechanical properties during leaching

H.3.3. Powder leaching experiments in salt brines

H.3.4. Kernel dissolution in HCl and HNO$_3$

H.3.5. Kernel leaching in water under γ-irradiation

H.4. Monte Carlo simulation of solid solution dissolution

H.4.1. Monte Carlo simulation routine source code

H.4.2. Determination of model input parameters

H.5. List of tables

H.6. List of figures