Contents

CHAPTER 1

Radiation Sources

I. Units and Definitions 2
II. Fast Electron Sources 4
III. Heavy Charged Particle Sources 7
IV. Sources of Electromagnetic Radiation 11
V. Neutron Sources 20

CHAPTER 2

Radiation Interactions 30
I. Interaction of Heavy Charged Particles 31
II. Interaction of Fast Electrons 44
III. Interaction of Gamma Rays 50
IV. Interaction of Neutrons 57
V. Radiation Exposure and Dose 59

CHAPTER 3

Counting Statistics and Error Prediction 65
I. Characterization of Data 66
II. Statistical Models 70
III. Applications of Statistical Models 80
IV. Error Propagation 87
V. Optimization of Counting Experiments 94
VI. Distribution of Time Intervals 96
CHAPTER 4

General Properties of Radiation Detectors 103
 I. Simplified Detector Model 103
 II. Modes of Detector Operation 104
 III. Pulse Height Spectra 110
 IV. Counting Curves and Plateaus 112
 V. Energy Resolution 114
 VI. Detection Efficiency 117
 VII. Dead Time 120

CHAPTER 5

Ionization Chambers 131
 I. The Ionization Process in Gases 131
 II. Charge Migration and Collection 134
 III. Design and Operation of DC Ion Chambers 138
 IV. Radiation Dose Measurement with Ion Chambers 142
 V. Applications of DC Ion Chambers 147
 VI. Pulse Mode Operation 149

CHAPTER 6

Proportional Counters 160
 I. Gas Multiplication 160
 II. Design Features of Proportional Counters 165
 III. Proportional Counter Performance 169
 IV. Detection Efficiency and Counting Curves 186
 V. Variants of the Proportional Counter Design 189

CHAPTER 7

Geiger – Mueller Counters 199
 I. The Geiger Discharge 200
 II. Fill Gases 202
 III. Quenching 202
 IV. Time Behavior 204
 V. The Geiger Counting Plateau 206
 VI. Design Features 208
 VII. Counting Efficiency 210
 VIII. G-M Survey Meters 212

CHAPTER 8

Scintillation Detector Principles 215
 I. Organic Scintillators 216
 II. Inorganic Scintillators 227
 III. Light Collection and Scintillator Mounting 240
CONTENTS

CHAPTER 9

Photomultiplier Tubes and Photodiodes 251

I. Introduction 251
II. The Photocathode 252
III. Electron Multiplication 256
IV. Photomultiplier Tube Characteristics 261
V. Ancillary Equipment Required with Photomultiplier Tubes 270
VI. Photodiodes as Substitutes for Photomultiplier Tubes 274
VII. Scintillation Pulse Shape Analysis 278
VIII. Position-Sensing Photomultiplier Tubes 282
IX. Photoionization Detectors 282

CHAPTER 10

Radiation Spectroscopy with Scintillators 287

I. General Considerations in Gamma-Ray Spectroscopy 287
II. Gamma-ray Interactions 288
III. Predicted Response Functions 293
IV. Properties of Scintillation Gamma-Ray Spectrometers 306
V. Response of Scintillation Detectors to Neutrons 324
VI. Electron Spectroscopy with Scintillators 325
VII. Specialized Detector Configurations Based on Scintillation 326

CHAPTER 11

Semiconductor Diode Detectors 337

I. Semiconductor Properties 338
II. The Action of Ionizing Radiation in Semiconductors 348
III. Semiconductors as Radiation Detectors 349
IV. Semiconductor Detector Configurations 359
V. Operational Characteristics 366
VI. Applications of Silicon Diode Detectors 375

CHAPTER 12

Germanium Gamma-Ray Detectors 387

I. General Considerations 387
III. Configurations of Germanium Detectors 388
III. Germanium Detector Operational Characteristics 395
IV. Gamma-Ray Spectroscopy with Germanium Detectors 409

CHAPTER 13

Other Solid-State Detectors 444

I. Lithium-Drifted Silicon Detectors 444
II. Semiconductor Materials Other than Silicon or Germanium 465
III. Avalanche Detectors 472
IV. Position-Sensitive Semiconductor Detectors 473
CHAPTER 14

Slow Neutron Detection Methods

I. Nuclear Reactions of Interest in Neutron Detection

II. Detectors Based on the Boron Reaction

III. Detectors Based on Other Conversion Reactions

IV. Reactor Instrumentation

CHAPTER 15

Fast Neutron Detection and Spectroscopy

I. Counters Based on Neutron Moderation

II. Detectors Based on Fast Neutron-Induced Reactions

III. Detectors that Utilize Fast Neutron Scattering

CHAPTER 16

Pulse Processing and Shaping

I. Device Impedances

II. Coaxial Cables

III. Pulse Shaping

CHAPTER 17

Linear and Logic Pulse Functions

I. Linear and Logic Pulses

II. Instrument Standards

III. Summary of Pulse-Processing Units

IV. Components Common to Many Applications

V. Pulse Counting Systems

VI. Pulse Height Analysis Systems

VII. Systems Involving Pulse Timing

VIII. Pulse Shape Discrimination

CHAPTER 18

Multichannel Pulse Analysis

I. Single-Channel Methods

II. General Multichannel Characteristics

III. The Multichannel Analyzer

IV. Spectrum Stabilization

V. Computerized Spectrum Analysis

CHAPTER 19

Miscellaneous Detector Types

I. Cerenkov Detectors

II. Gas-Filled Detectors in Self-Quenched Streamer Mode

III. Liquid Ionization and Proportional Counters

IV. Cryogenic and Superconducting Detectors