Radar Remote Sensing of Ocean Waves
Global Mapping of Mean and Peak Wave Parameters Extracted from SAR Cross Spectra

Danielle Hoja

Deutsches Zentrum für Luft- und Raumfahrt
Institut für Methodik der Fernerkundung
Oberpfaffenhofen

270 Seiten
124 Bilder
25 Tabellen
177 Literaturstellen
Contents

Acknowledgements vii
Information on available CD-ROM viii
Contents ix
Symbols and spectra overview xii
Acronyms and abbreviations xvi
List of figures xx
List of tables xxxii

1. INTRODUCTION 1
 1.1 State of the art of ocean wave measurements by SAR 3
 1.2 Aim of work 4

2. BASICS 8
 2.1 Theory of ocean waves 8
 2.1.1 Elementary physics of ocean waves 9
 2.1.2 Wind-waves generation, propagation, and dissipation 12
 2.1.3 Representation of marine parameters: wave spectra and maps 15
 2.2 Synthetic aperture radar (SAR) 23
 2.2.1 SAR processing 24
 2.2.2 Radar equation, distributed scenes, and radar cross section 25
 2.2.3 Speckle effect and multi-looking method 26
 2.3 Imaging of sea surface by SAR 27
 2.3.1 RAR and SAR imaging of the ocean surface 29
 2.3.2 Characteristics of image spectra 34

3. DESCRIPTION OF DATA SOURCES 38
 3.1 European Remote Sensing Satellite ERS-2 38
 3.1.1 AMI SAR data 39
 3.1.2 AMI scatterometer data 40
 3.1.3 Radar altimeter data 42
 3.2 European Environmental Satellite ENVISAT 44
 3.2.1 ASAR data 45
 3.2.2 Radar altimeter 48
 3.3 WAM model data 48

4. ANALYSIS OF SAR IMAGE INFORMATION 51
 4.1 Description of data set 51
 4.2 Sea surface features 56
5. COMPARISON OF THE OCEAN WAVE MODEL WAM WITH ERS-2 SAR CROSS SPECTRA

5.1 Derivation of cross spectra
- 5.1.1 Estimation of SAR cross spectra from complex SAR imagettes
- 5.1.2 Forward mapping of ocean wave spectra into cross spectra

5.2 Description of the partitioning algorithm
- 5.2.1 Partitioning of spectra
- 5.2.2 Merging of partitions
- 5.2.3 Post processing
- 5.2.4 Cross assigning

5.3 Classification as wind sea and swell systems
- 5.3.1 SAR wind retrieval using C-band models
- 5.3.2 Imagettes containing wind streaks
- 5.3.3 Wind sea / swell classification scheme
- 5.3.4 Analysis of the classification results for SAR cross spectra

5.4 Validation results
- 5.4.1 Wave parameters of whole spectrum
- 5.4.2 Results of component wave systems
- 5.4.3 Grid-related errors of parameter retrieval from spectra

5.5 Conclusions of cross spectra comparison

6. DISCUSSION OF INVERSION ALGORITHMS

6.1 Inversion of cross spectra into ocean wave spectra
- 6.1.1 Quasi-linear inversion (QL)
- 6.1.2 Partition rescale and shift algorithm (PARSA)

6.2 Analysis of inversion algorithms by comparison of inverted wave spectra
- 6.2.1 General features of inverted ocean wave spectra
- 6.2.2 Wave parameters of whole spectrum
- 6.2.3 Results of component wave systems

6.3 Assessment of retrieved wave heights
- 6.3.1 Comparison of image variance
- 6.3.2 Comparison SAR inverted with modelled WAM wave heights
- 6.3.3 Comparison of SAR inverted with altimeter wave heights

7. DIFFERENCES BETWEEN OBSERVATION AND MODEL

7.1 Challenges and artefacts of the SAR processing

7.2 Additional Marine Effects

7.3 Effects of the Forward Model

7.4 Errors in ocean wave modelling and input wind fields
- 7.4.1 Inconsistencies between observed and modelled cross spectra
- 7.4.2 Differences to SAR observations caused by wave modelling