Advanced Machining Processes

Nontraditional and Hybrid Machining Processes

Hassan El-Hofy
Production Engineering Department
Alexandria University, Egypt

McGraw-Hill
New York Chicago San Francisco Lisbon London Madrid
Mexico City Milan New Delhi San Juan Seoul
Singapore Sydney Toronto
Contents

Preface xi
Acknowledgments xvii
List of Acronyms xix
List of Symbols xxiii

Chapter 1. Material Removal Processes

1.1 Introduction 1
1.2 History of Machining 1
1.3 Traditional Machining 5
 1.3.1 Machining by cutting 5
 1.3.2 Machining by abrasion 6
1.4 Nontraditional Machining 8
 1.4.1 Single-action nontraditional machining 9
 1.4.2 Hybrid machining 10
References 13

Chapter 2. Mechanical Processes

2.1 Ultrasonic Machining 15
 2.1.1 Introduction 15
 2.1.2 The machining system 15
 2.1.3 Material removal process 22
 2.1.4 Factors affecting material removal rate 24
 2.1.5 Dimensional accuracy and surface quality 26
 2.1.6 Applications 28
2.2 Water Jet Machining 32
 2.2.1 Introduction 32
 2.2.2 The machining system 32
 2.2.3 Process parameters 34
 2.2.4 Applications 35
 2.2.5 Advantages and disadvantages of WJM 38
2.3 Abrasive Jet Machining 39
 2.3.1 Introduction 39
 2.3.2 Machining system 39
 2.3.3 Material removal rate 40
 2.3.4 Applications 42
 2.3.5 Advantages and limitations of AJM 42
Chapter 4. Electrochemical Processes

4.1 Electrochemical Machining
 - 4.1.1 Introduction 77
 - 4.1.2 Principles of electrolysis 77
 - 4.1.3 Theory of ECM 78
 - 4.1.4 ECM equipment 79
 - 4.1.5 Basic working principles 84
 - 4.1.6 Process characteristics 87
 - 4.1.7 Process control 95
 - 4.1.8 Applications 97
 - 4.1.9 Micro-ECM 98
 - 4.1.10 Advantages and disadvantages of ECM 98
 - 4.1.11 Environmental impacts 99

4.2 Electrochemical Drilling

4.3 Shaped Tube Electrolytic Machining

References

Chapter 3. Chemical Processes

3.1 Chemical Milling
 - 3.1.1 Introduction 55
 - 3.1.2 Tooling for CHM 57
 - 3.1.3 Process parameters 61
 - 3.1.4 Material removal rate 61
 - 3.1.5 Accuracy and surface finish 62
 - 3.1.6 Advantages 63
 - 3.1.7 Limitations 64
 - 3.1.8 Applications 64

3.2 Photochemical Milling
 - 3.2.1 Introduction 66
 - 3.2.2 Process description 66
 - 3.2.3 Applications 67
 - 3.2.4 Advantages 68

3.3 Electropolishing
 - 3.3.1 Introduction 70
 - 3.3.2 Process parameters 73
 - 3.3.3 Applications 73
 - 3.3.4 Process limitations 74

References

Chapter 1. Introduction to Machining

1.1 Fundamentals of Machining
 - 1.1.1 Principles of machining 11
 - 1.1.2 Cutting forces and tool life 12
 - 1.1.3 Tool materials and coatings 13
 - 1.1.4 Machining accuracy and surface finish 15

1.2 Machining Systems
 - 1.2.1 Overview 16
 - 1.2.2 CNC machining centers 17
 - 1.2.3 Machine tool design 18

1.3 Machining Processes
 - 1.3.1 Overview 19
 - 1.3.2 Turning 20
 - 1.3.3 Drilling 22
 - 1.3.4 Milling 24

References
Chapter 5. Thermal Processes

5.1 Electrodischarge Machining
 5.1.1 Introduction
 5.1.2 Mechanism of material removal
 5.1.3 The machining system
 5.1.4 Material removal rates
 5.1.5 Surface integrity
 5.1.6 Heat-affected zone
 5.1.7 Applications
 5.1.8 Process control
 5.1.9 EDM automation
 5.1.10 Environmental Impact

5.2 Laser Beam Machining
 5.2.1 Introduction
 5.2.2 Material removal mechanism
 5.2.3 Applications
 5.2.4 Advantages and limitations

5.3 Electron Beam Machining
 5.3.1 Introduction
 5.3.2 Basic equipment and removal mechanism
 5.3.3 Applications
 5.3.4 Advantages and disadvantages

5.4 Plasma Beam Machining
 5.4.1 Introduction
 5.4.2 Machining systems
 5.4.3 Material removal rate
 5.4.4 Accuracy and surface quality
 5.4.5 Applications
 5.4.6 Advantages and disadvantages

5.5 Ion Beam Machining
 5.5.1 Introduction
 5.5.2 Material removal rate
 5.5.3 Accuracy and surface effects
 5.5.4 Applications

References

Chapter 6. Hybrid Electrochemical Processes

6.1 Introduction
 6.2 Electrochemical Grinding
 6.2.1 Introduction
 6.2.2 Material removal rate
 6.2.3 Accuracy and surface quality
 6.2.4 Applications
 6.2.5 Advantages and disadvantages

6.3 Electrochemical Honing
 6.3.1 Introduction
 6.3.2 Process characteristics

References
Contents

6.3.3 Applications 191
6.4 Electrochemical Superfinishing 192
 6.4.1 Introduction 192
 6.4.2 Material removal process 193
 6.4.3 Process accuracy 195
6.5 Electrochemical Buffing 196
 6.5.1 Introduction 196
 6.5.2 Material removal process 196
6.6 Ultrasonic-Assisted ECM 197
 6.6.1 Introduction 197
 6.6.2 Material removal process 198
6.7 Laser-Assisted ECM 199
References 201

Chapter 7. Hybrid Thermal Processes 203
 7.1 Introduction 203
 7.2 Electroerosion Dissolution Machining 204
 7.3 Electrodischarge Grinding 212
 7.4 Abrasive Electrodischarge Machining 216
 7.5 EDM with Ultrasonic Assistance 218
 7.6 Electrochemical Discharge Grinding 221
 7.7 Brush Erosion-Dissolution Mechanical Machining 224
References 226

Chapter 8. Material Addition Processes 229
 8.1 Introduction 229
 8.2 Liquid-Based Techniques 230
 8.2.1 Stereolithography 230
 8.2.2 Holographic interference solidification 232
 8.2.3 Beam interference solidification 232
 8.2.4 Solid ground curing 233
 8.2.5 Liquid thermal polymerization 235
 8.2.6 Fused deposition modelling 235
 8.2.7 Multijet modeling 238
 8.2.8 Ballistic particles manufacturing 239
 8.2.9 Shape deposition manufacturing 240
 8.3 Powder-Based Processes 241
 8.3.1 Selective laser sintering 241
 8.3.2 Laser engineered net shaping 242
 8.3.3 Three-dimensional printing 243
 8.4 Solid-Based Techniques 244
 8.4.1 Solid foil polymerization 244
 8.4.2 Laminated object modeling 245
References 246

Index 249