Continuum Mechanics and Plasticity
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>xiii</td>
</tr>
<tr>
<td>Author</td>
<td>xvii</td>
</tr>
</tbody>
</table>

Part I Fundamentals of Continuum Mechanics

1 Cartesian Tensors
1.1 Introduction
1.1.1 Notations
1.1.2 Cartesian Coordinate System
1.1.3 Special Tensors
1.2 Vectors
1.2.1 Base Vectors and Components
1.2.2 Vector Addition and Multiplication
1.2.3 The ϵ_δ Identity
1.3 The Transformation of Axes
1.4 The Dyadic Product (The Tensor Product)
1.5 Cartesian Tensors
1.5.1 General Properties
1.5.2 Multiplication of Tensors
1.5.3 The Component Form and Matrices
1.5.4 Quotient Law
1.6 Rotation of a Tensor
1.6.1 Orthogonal Tensor
1.6.2 Component Form of Rotation of a Tensor
1.6.3 Some Remarks
1.7 The Isotropic Tensors
1.8 Vector and Tensor Calculus
1.8.1 Tensor Field
1.8.2 Gradient, Divergence, Curl
1.8.3 The Theorem of Gauss
References
Problems

2 Stress
2.1 Introduction
2.2 Forces
Contents

2.3 Stress Vector 46
2.4 The Stress Tensor 47
2.5 Equations of Equilibrium 50
2.6 Symmetry of the Stress Tensor 52
2.7 Principal Stresses 53
2.8 Properties of Eigenvalues and Eigenvectors 55
2.9 Normal and Shear Components 59
 2.9.1 Directions Along which Normal Components of \(\sigma_{ij} \) Are Maximized or Minimized 60
 2.9.2 The Maximum Shear Stress 60
2.10 Mean and Deviatoric Stresses 64
2.11 Octahedral Shearing Stress 65
2.12 The Stress Invariants 66
2.13 Spectral Decomposition of a Symmetric Tensor of Rank Two 69
2.14 Powers of a Tensor 71
2.15 Cayley–Hamilton Theorem 72
References 73
Problems 74

3 Motion and Deformation 79
 3.1 Introduction 79
 3.2 Material and Spatial Descriptions 80
 3.2.1 Material Description 80
 3.2.2 Spatial Description 81
 3.3 Description of Deformation 83
 3.4 Deformation of a Neighborhood 83
 3.4.1 Homogeneous Deformations 85
 3.4.2 Nonhomogeneous Deformations 86
 3.5 The Deformation Gradient 88
 3.5.1 The Polar Decomposition Theorem 88
 3.5.2 Polar Decompositions of the Deformation Gradient 90
 3.6 The Right Cauchy–Green Deformation Tensor 98
 3.6.1 The Physical Meaning 98
 3.6.2 Transformation Properties of \(C_{RS} \) 101
 3.6.3 Eigenvalues and Eigenvectors of \(C_{RS} \) 103
 3.6.4 Principal Invariants of \(C_{RS} \) 104
 3.7 Deformation of Volume and Area of a Material Element 105
 3.8 The Left Cauchy–Green Deformation Tensor 108
 3.9 The Lagrangian and Eulerian Strain Tensors 108
 3.9.1 Definitions 108
 3.9.2 Geometric Interpretation of the Strain Components 112
 3.9.3 The Volumetric Strain 115
 3.10 Other Strain Measures 118
 3.11 Material Rate of Change 119
 3.11.1 Material Description of the Material Derivative 119
 3.11.2 Spatial Description of the Material Derivative 120
3.12 Dual Vectors and Dual Tensors 122
3.13 Velocity of a Particle Relative to a Neighboring Particle 124
3.14 Physical Significance of the Rate of Deformation Tensor 125
3.15 Physical Significance of the Spin Tensor 128
3.16 Expressions for \mathbf{D} and \mathbf{W} in Terms of \mathbf{F} 129
3.17 Material Derivative of Strain Measures 131
3.18 Material Derivative of Area and Volume Elements 132
References 133
Problems 134

4 Conservation Laws and Constitutive Equation 141
4.1 Introduction 141
4.2 Bulk Material Rate of Change 142
4.3 Conservation Laws 145
4.3.1 The Conservation of Mass 145
4.3.2 The Conservation of Momentum 146
4.3.3 The Conservation of Energy 148
4.4 The Constitutive Laws in the Material Description 150
4.4.1 The Conservation of Mass 150
4.4.2 The Conservation of Momentum 151
4.4.3 The Conservation of Energy 163
4.5 Objective Tensors 164
4.6 Property of Deformation and Motion Tensors Under Reference Frame Transformation 166
4.7 Objective Rates 169
4.7.1 Some Objective Rates 169
4.7.2 Physical Meaning of the Jaumann Stress Rate 172
4.8 Finite Elasticity 174
4.8.1 The Cauchy Elasticity 175
4.8.2 Hyperelasticity 177
4.8.3 Isotropic Hyperelastic Materials 181
4.8.4 Applications of Isotropic Hyperelasticity 185
4.9 Infinitesimal Theory of Elasticity 193
4.9.1 Constitutive Equation 193
4.9.2 Homogeneous Deformations 195
4.9.3 Boundary-Value Problems 197
4.10 Hypoelasticity 197
References 200
Problems 200

Part II Continuum Theory of Plasticity

5 Fundamentals of Continuum Plasticity 205
5.1 Introduction 205
5.2 Some Basic Mechanical Tests
5.2.1 The Uniaxial Tension Test 209
5.2.2 The Uniaxial Compression Test 216
5.2.3 The Torsion Test 219
5.2.4 Strain Rate, Temperature, and Creep 225
5.3 Modeling the Stress–Strain Curve 231
5.4 The Effects of Hydrostatic Pressure 234
5.5 Torsion Test in the Large Strain Range
5.5.1 Introduction 237
5.5.2 Experimental Program and Procedures 241
5.5.3 Experimental Results and Discussions 246
5.5.4 Determination of Shear Stress–Strain Curve 256
References 260
Problems 263

6 The Flow Theory of Plasticity
6.1 Introduction 265
6.2 The Concept of Yield Criterion 265
6.2.1 Mathematical Expressions of Yield Surface 269
6.2.2 Geometrical Representation of Yield Surface in the Principal Stress Space 271
6.3 The Flow Rule 274
6.4 The Elastic-Perfectly Plastic Material 276
6.5 Strain-Hardening 286
6.5.1 Drucker’s Postulate 287
6.5.2 The Isotropic-Hardening Rule 290
6.5.3 The Kinematic-Hardening Rule 296
6.5.4 General Form of Subsequent Yield Function and Its Flow Rule 301
6.6 The Return-Mapping Algorithm 306
6.7 Combined Axial-Torsion of Strain-Hardening Materials 308
6.8 Flow Theory in the Strain Space 314
6.9 Remarks 316
References 317
Problems 318

7 Advances in Plasticity
7.1 Introduction 323
7.2 Experimental Determination of Yield Surfaces 324
7.2.1 Factors Affecting the Determination of Yield Surface 325
7.2.2 A Summary of Experiments Related to the Determination of Yield Surfaces 328
7.2.3 Yield Surface Versus Loading Surface 333
7.2.4 Yield Surface at Elevated Temperature 335
7.3 The Direction of the Plastic Strain Increment 336
7.4 Multisurface Models of Flow Plasticity 340
9.3 Endochronic Plasticity in the Finite Strain Range 468
 9.3.1 Corotational Integrals 469
 9.3.2 Endochronic Equations for Finite Plastic Deformation 474
 9.3.3 Application to a Rigid-Plastic Thin-Walled Tube Under Torsion 476
9.4 An Endochronic Theory for Porous and Granular Materials 487
 9.4.1 The Endochronic Equations 490
 9.4.2 Application to Concrete 500
 9.4.3 Application to Sand 502
 9.4.4 Application to Porous Aluminum 503
9.5 An Endochronic Formulation of a Plastically Deformed Damaged Continuum 506
 9.5.1 Introduction 506
 9.5.2 The Anisotropic Damage Tensor 507
 9.5.3 Gross Stress, Net Stress, and Effective Stress 512
 9.5.4 An Internal State Variables Theory 516
 9.5.5 Plasticity and Damage 521
 9.5.6 The Constitutive Equations and Constraints 523
 9.5.7 A Brief Summary of Wu and Nanakorn's Endochronic CDM 526
 9.5.8 Application 530
 9.5.9 Concluding Remarks 535
References 537
Problems 541
10 Anisotropic Plasticity for Sheet Metals 543
 10.1 Introduction 543
 10.2 Standard Tests for Sheet Metal 545
 10.2.1 The Uniaxial Tension Test 545
 10.2.2 Equibiaxial Tension Test 545
 10.2.3 Hydraulic Bulge Test 545
 10.2.4 Through-Thickness Compression Test 545
 10.2.5 Plane-Strain Compression Test 546
 10.2.6 Simple Shear Test 546
 10.3 Experimental Yield Surface for Sheet Metal 546
 10.4 Hill's Anisotropic Theory of Plasticity 548
 10.4.1 The Quadratic Yield Criterion 548
 10.4.2 The Flow Rule and the R-Ratio 550
 10.4.3 The Equivalent Stress and Equivalent Strain 552
 10.4.4 The Anomalous Behavior 553
 10.5 Nonquadratic Yield Functions 555
 10.6 Anisotropic Plasticity Using Combined Isotropic–Kinematic Hardening 558
 10.6.1 Introduction 558
10.6.2 The Anisotropic Theory Using Combined Isotropic–Kinematic Hardening 560
10.6.3 Results and Discussion 566
10.6.4 Summary and Conclusion 572
References 575
Problems 577

11 Description of Anisotropic Material Behavior Using Curvilinear Coordinates 579
11.1 Convected Coordinate System and Convected Material Element 579
11.2 Curvilinear Coordinates and Base Vectors 580
11.3 Tensors and Special Tensors 584
11.4 Multiplication of Vectors 590
11.5 Physical Components of a Vector 591
11.6 Differentiation of a Tensor with Respect to the Space Coordinates 592
 11.6.1 Derivative of a Scalar 593
 11.6.2 Derivatives of a Vector 593
 11.6.3 Derivatives of a Tensor 594
11.7 Strain Tensor 599
11.8 Strain–Displacement Relations 603
11.9 Stress Vector and Stress Tensor 606
11.10 Physical Components of the Stress Tensor 609
11.11 Other Stress Tensors and the Cartesian Stress Components 610
11.12 Stress Rate and Strain Rate 612
11.13 Further Discussion of Stress Rate 617
11.14 A Theory of Plasticity for Anisotropic Metals 619
 11.14.1 The Yield Function 621
 11.14.2 The Flow Rule 628
 11.14.3 The Strain Hardening 628
 11.14.4 Elastic Constitutive Equations 629
References 630
Problems 631

12 Combined Axial–Torsion of Thin-Walled Tubes 633
12.1 Introduction 633
12.2 Convected Coordinates in the Combined Axial–Torsion of a Thin-Walled Tube 634
12.3 The Yield Function 637
 12.3.1 The Mises Yield Criterion 637
 12.3.2 A Yield Criterion Proposed by Wu 638
12.4 Flow Rule and Strain Hardening 642
12.5 Elastic Constitutive Equations 646
12.6 Algorithm for Computation 647
12.7 Nonlinear Kinematic Hardening 649
12.8 Description of Yield Surface with Various Preloading Paths
 12.8.1 Path (1) — Axial Tension 652
 12.8.2 Path (2) — Torsion 656
 12.8.3 Path (3) — Proportional Loading 660
 12.8.4 Tor-Ten Path (4) 660
 12.8.5 Tor-Ten Path (5) 662
 12.8.6 Tor-Ten Path with Constant Shear Strain 664
12.9 A Stress Path of Tension-Unloading Followed by Torsion 665
12.10 Summary and Discussion 668
References 669
Problems 670

Answers and Hints to Selected Problems 671

Author Index 677

Subject Index 681