Mohammad Ahmed

SLIDING MODE CONTROL FOR SWITCHED MODE POWER SUPPLIES

Thesis for the degree of Doctor of Science (Technology) to be presented with due permission for public examination and criticism in the auditorium 1382 at Lappeenranta University of Technology, Lappeenranta, Finland on the 14th of December 2004, at noon.
Content

<table>
<thead>
<tr>
<th>Section</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>7</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>9</td>
</tr>
<tr>
<td>List of Symbols and Abbreviations</td>
<td>11</td>
</tr>
<tr>
<td>Acronyms</td>
<td>13</td>
</tr>
<tr>
<td>List of Publications</td>
<td>15</td>
</tr>
<tr>
<td>1. INTRODUCTION</td>
<td>17</td>
</tr>
<tr>
<td>1.1 Objective of the Research Work</td>
<td>19</td>
</tr>
<tr>
<td>2. DC/DC POWER SUPPLIES</td>
<td>21</td>
</tr>
<tr>
<td>2.1 Introduction</td>
<td>23</td>
</tr>
<tr>
<td>2.2 Linear Power Supply</td>
<td>25</td>
</tr>
<tr>
<td>2.3 Switched Mode Power Supply</td>
<td>27</td>
</tr>
<tr>
<td>2.4 Switched-Mode Power Supply Topologies</td>
<td>29</td>
</tr>
<tr>
<td>2.4.1 Non-isolated Topologies</td>
<td>31</td>
</tr>
<tr>
<td>2.4.2 Isolated Topologies</td>
<td>33</td>
</tr>
<tr>
<td>2.4.3 Multiple Switch Topologies</td>
<td>35</td>
</tr>
<tr>
<td>2.5 DC/DC Resonant Converters</td>
<td>37</td>
</tr>
<tr>
<td>2.5.1 DC/DC Resonant Converter Topologies</td>
<td>39</td>
</tr>
<tr>
<td>2.6 Continuous Conducted Mode and Discontinuous Conduction Mode</td>
<td>41</td>
</tr>
<tr>
<td>2.7 Switched-Mode Topology Applications and Classifications</td>
<td>43</td>
</tr>
<tr>
<td>2.8 Summary</td>
<td>45</td>
</tr>
<tr>
<td>3. CONTROL METHODS</td>
<td>47</td>
</tr>
<tr>
<td>3.1 Introduction</td>
<td>49</td>
</tr>
<tr>
<td>3.2 Stability of Linear and Nonlinear Control Systems</td>
<td>51</td>
</tr>
<tr>
<td>3.3 Control Methods</td>
<td>53</td>
</tr>
<tr>
<td>3.4 PID Control</td>
<td>55</td>
</tr>
<tr>
<td>3.5 Hysteresis Control</td>
<td>57</td>
</tr>
<tr>
<td>3.6 Adaptive Control</td>
<td>59</td>
</tr>
<tr>
<td>3.6.1 Model-Reference Adaptive Control Method</td>
<td>61</td>
</tr>
<tr>
<td>3.6.2 Self-Tuning Controller</td>
<td>63</td>
</tr>
<tr>
<td>3.7 Current Programmed Control</td>
<td>65</td>
</tr>
<tr>
<td>3.8 Variable Structure Control System (VSCS)</td>
<td>67</td>
</tr>
<tr>
<td>3.9 Sliding Mode Control (SMC)</td>
<td>69</td>
</tr>
<tr>
<td>3.9.1 Principle of Sliding Mode Control</td>
<td>71</td>
</tr>
<tr>
<td>3.10 Summary</td>
<td>73</td>
</tr>
<tr>
<td>4. SLIDING MODE CONTROL</td>
<td>75</td>
</tr>
<tr>
<td>4.1 Introduction</td>
<td>77</td>
</tr>
<tr>
<td>4.2 Sliding Mode Control Researches and Applications in Electrical and Mechanical Systems</td>
<td>79</td>
</tr>
<tr>
<td>4.3 Review of the Theory of Sliding Mode Control</td>
<td>81</td>
</tr>
<tr>
<td>4.3.1 Existence Condition</td>
<td>83</td>
</tr>
<tr>
<td>4.3.2 Reaching Condition</td>
<td>85</td>
</tr>
<tr>
<td>4.3.3 System Description in Sliding Mode</td>
<td>87</td>
</tr>
<tr>
<td>4.3.4 Chattering</td>
<td>89</td>
</tr>
<tr>
<td>4.4 Sliding Mode Control for DC/DC Converters</td>
<td>91</td>
</tr>
<tr>
<td>4.4.1 Phase plane Description of SMC for DC/DC Buck Converter</td>
<td>93</td>
</tr>
<tr>
<td>4.4.2 Existence Condition of SMC for DC/DC Buck Converter</td>
<td>95</td>
</tr>
<tr>
<td>4.5 Sliding Mode Control Researches and Applications in DC/DC Converters</td>
<td>97</td>
</tr>
<tr>
<td>4.6 Summary</td>
<td>99</td>
</tr>
</tbody>
</table>
5. RESEARCH WORK

5.1 Summary of the Research Work

5.2 Summary of the Publications

5.2.1 Publication P [1]

5.2.2 Publication P [2]

5.2.3 Publication P [3]

5.2.4 Publication P [4]

5.2.5 Publication P [5]

5.2.6 Publication P [6]

5.2.7 Publication P [7]

5.2.8 Publication P [8]

5.2.9 Publication P [9]

6. CONCLUSIONS AND FUTURE WORKS

6.1 Conclusions

6.2 Suggestions for Future Researches

REFERENCES

APPENDICES