Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foreword</td>
<td>xiii</td>
</tr>
<tr>
<td>Preface</td>
<td>xxi</td>
</tr>
<tr>
<td>Preface to the second edition</td>
<td>xxv</td>
</tr>
</tbody>
</table>

1 Basic hypergeometric series

1.1 Introduction 1
1.2 Hypergeometric and basic hypergeometric series 1
1.3 The q-binomial theorem 8
1.4 Heine’s transformation formulas for $2\phi_1$ series 13
1.5 Heine’s q-analogue of Gauss’ summation formula 14
1.6 Jacobi’s triple product identity, theta functions, and elliptic numbers 15
1.7 A q-analogue of Saalschütz’s summation formula 17
1.8 The Bailey–Daum summation formula 18
1.9 q-analogues of the Karlsson–Minton summation formulas 18
1.10 The q-gamma and q-beta functions 20
1.11 The q-integral 23
 Exercises 24
 Notes 34

2 Summation, transformation, and expansion formulas

2.1 Well-poised, nearly-poised, and very-well-poised hypergeometric and basic hypergeometric series 38
2.2 A general expansion formula 40
2.3 A summation formula for a terminating very-well-poised $4\phi_3$ series 41
2.4 A summation formula for a terminating very-well-poised $6\phi_5$ series 42
2.5 Watson’s transformation formula for a terminating very-well-poised $8\phi_7$ series 42
2.6 Jackson’s sum of a terminating very-well-poised balanced $8\phi_7$ series 43
2.7 Some special and limiting cases of Jackson’s and Watson’s formulas: the Rogers–Ramanujan identities 44
2.8 Bailey’s transformation formulas for terminating $5\phi_4$ and $7\phi_6$ series 45
2.9 Bailey’s transformation formula for a terminating $10\phi_9$ series 47
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.10 Limiting cases of Bailey’s $10\phi_9$ transformation formula</td>
<td>48</td>
</tr>
<tr>
<td>2.11 Bailey’s three-term transformation formula for VWP-balanced $8\phi_7$ series</td>
<td>53</td>
</tr>
<tr>
<td>2.12 Bailey’s four-term transformation formula for balanced $10\phi_9$ series</td>
<td>55</td>
</tr>
<tr>
<td>Exercises</td>
<td>58</td>
</tr>
<tr>
<td>Notes</td>
<td>67</td>
</tr>
<tr>
<td>3 Additional summation, transformation, and expansion formulas</td>
<td>69</td>
</tr>
<tr>
<td>3.1 Introduction</td>
<td>69</td>
</tr>
<tr>
<td>3.2 Two-term transformation formulas for $3\phi_2$ series</td>
<td>70</td>
</tr>
<tr>
<td>3.3 Three-term transformation formulas for $3\phi_2$ series</td>
<td>73</td>
</tr>
<tr>
<td>3.4 Transformation formulas for well-poised $3\phi_2$ and very-well-poised $5\phi_4$ series with arbitrary arguments</td>
<td>74</td>
</tr>
<tr>
<td>3.5 Transformations of series with base q^2 to series with base q</td>
<td>77</td>
</tr>
<tr>
<td>3.6 Bibasic summation formulas</td>
<td>80</td>
</tr>
<tr>
<td>3.7 Bibasic expansion formulas</td>
<td>84</td>
</tr>
<tr>
<td>3.8 Quadratic, cubic, and quartic summation and transformation formulas</td>
<td>88</td>
</tr>
<tr>
<td>3.9 Multibasic hypergeometric series</td>
<td>95</td>
</tr>
<tr>
<td>3.10 Transformations of series with base q to series with base q^2</td>
<td>96</td>
</tr>
<tr>
<td>Exercises</td>
<td>100</td>
</tr>
<tr>
<td>Notes</td>
<td>111</td>
</tr>
<tr>
<td>4 Basic contour integrals</td>
<td>113</td>
</tr>
<tr>
<td>4.1 Introduction</td>
<td>113</td>
</tr>
<tr>
<td>4.2 Watson’s contour integral representation for $2\phi_1(a, b; c; q, z)$ series</td>
<td>115</td>
</tr>
<tr>
<td>4.3 Analytic continuation of $2\phi_1(a, b; c; q, z)$</td>
<td>117</td>
</tr>
<tr>
<td>4.4 q-analogues of Barnes’ first and second lemmas</td>
<td>119</td>
</tr>
<tr>
<td>4.5 Analytic continuation of $r+1\phi_r$ series</td>
<td>120</td>
</tr>
<tr>
<td>4.6 Contour integrals representing well-poised series</td>
<td>121</td>
</tr>
<tr>
<td>4.7 A contour integral analogue of Bailey’s summation formula</td>
<td>123</td>
</tr>
<tr>
<td>4.8 Extensions to complex q inside the unit disc</td>
<td>124</td>
</tr>
<tr>
<td>4.9 Other types of basic contour integrals</td>
<td>125</td>
</tr>
<tr>
<td>4.10 General basic contour integral formulas</td>
<td>126</td>
</tr>
</tbody>
</table>
4.11 Some additional extensions of the beta integral 129
4.12 Sears' transformations of well-poised series 130
 Exercises 132
 Notes 135

5 Bilateral basic hypergeometric series 137
5.1 Notations and definitions 137
5.2 Ramanujan's sum for $\psi_1(a; b; q, z)$ 138
5.3 Bailey's sum of a very-well-poised ψ_6 series 140
5.4 A general transformation formula for an ψ_r series 141
5.5 A general transformation formula for a very-well-poised ψ_{2r} series 143
5.6 Transformation formulas for very-well-poised ψ_8 and ψ_{10} series 145
 Exercises 146
 Notes 152

6 The Askey–Wilson q-beta integral and
some associated formulas 154
6.1 The Askey–Wilson q-extension of the beta integral 154
6.2 Proof of formula (6.1.1) 156
6.3 Integral representations for very-well-poised ϕ_7 series 157
6.4 Integral representations for very-well-poised ϕ_9 series 159
6.5 A quadratic transformation formula for very-well-poised balanced ϕ_9
 series 162
6.6 The Askey–Wilson integral when $\max(|a|, |b|, |c|, |d|) \geq 1$ 163
 Exercises 168
 Notes 173

7 Applications to orthogonal polynomials 175
7.1 Orthogonality 175
7.2 The finite discrete case: the q-Racah polynomials and some special cases 177
7.3 The infinite discrete case: the little and big q-Jacobi polynomials 181
7.4 An absolutely continuous measure: the continuous q-ultraspherical
 polynomials 184
7.5 The Askey–Wilson polynomials 188
7.6 Connection coefficients 195
7.7 A difference equation and a Rodrigues-type formula for the
Askey–Wilson polynomials 197
Exercises 199
Notes 213

8 Further applications 217
8.1 Introduction 217
8.2 A product formula for balanced $4\phi_3$ polynomials 218
8.3 Product formulas for q-Racah and Askey–Wilson polynomials 221
8.4 A product formula in integral form for the continuous q-ultraspherical
polynomials 223
8.5 Rogers’ linearization formula for the continuous q-ultraspherical
polynomials 226
8.6 The Poisson kernel for $C_n(x; \beta|q)$ 227
8.7 Poisson kernels for the q-Racah polynomials 229
8.8 q-analogues of Clausen’s formula 232
8.9 Nonnegative basic hypergeometric series 236
8.10 Applications in the theory of partitions of positive integers 239
8.11 Representations of positive integers as sums of squares 242
Exercises 245
Notes 257

9 Linear and bilinear generating functions for
basic orthogonal polynomials 259
9.1 Introduction 259
9.2 The little q-Jacobi polynomials 260
9.3 A generating function for Askey–Wilson polynomials 262
9.4 A bilinear sum for the Askey–Wilson polynomials I 265
9.5 A bilinear sum for the Askey–Wilson polynomials II 269
9.6 A bilinear sum for the Askey–Wilson polynomials III 270
Exercises 272
Notes 281
Contents

10 \(q \)-series in two or more variables 282

10.1 Introduction 282
10.2 \(q \)-Appell and other basic double hypergeometric series 282
10.3 An integral representation for \(\Phi^{(1)}(q^a; q^b, q^{b'}; q^c; q; x, y) \) 284
10.4 Formulas for \(\Phi^{(2)}(q^a; q^b, q^{b'}; q^c, q^{c'}; q; x, y) \) 286
10.5 Formulas for \(\Phi^{(3)}(q^a, q^{a'}; q^b, q^{b'}; q^c; q; x, y) \) 288
10.6 Formulas for a \(q \)-analogue of \(F_1 \) 290
10.7 An Askey–Wilson-type integral representation for a \(q \)-analogue of \(F_1 \) 294
 Exercises 296
 Notes 301

11 Elliptic, modular, and theta hypergeometric series 302

11.1 Introduction 302
11.2 Elliptic and theta hypergeometric series 303
11.3 Additive notations and modular series 312
11.4 Elliptic analogue of Jackson’s \(8\phi_7 \) summation formula 321
11.5 Elliptic analogue of Bailey’s transformation formula for a terminating \(10\phi_9 \) series 323
11.6 Multibasic summation and transformation formulas for theta hypergeometric series 325
11.7 Rosengren’s elliptic extension of Milne’s fundamental theorem 331
 Exercises 336
 Notes 349

Appendix I Identities involving \(q \)-shifted factorials, \(q \)-gamma functions and \(q \)-binomial coefficients 351
Appendix II Selected summation formulas 354
Appendix III Selected transformation formulas 359
References 367
Symbol index 415
Author index 418
Subject index 423