Contents

Acknowledgements \hspace{1cm} xv
Dedication \hspace{1cm} xviii
About the author \hspace{1cm} xix

1 **Centrifugal Pumps** \hspace{1cm} 1
 1.1 The pump \hspace{1cm} 1
 1.2 Applications \hspace{1cm} 2
 1.3 Pump cases \hspace{1cm} 4
 1.3.1 Diffuser casings \hspace{1cm} 6
 1.3.2 Back cover arrangements \hspace{1cm} 7
 1.3.3 Mounting feet \hspace{1cm} 8
 1.4 The impeller \hspace{1cm} 8
 1.4.1 Specific speed \hspace{1cm} 9
 1.4.2 Open and closed impellers \hspace{1cm} 10
 1.5 Double suction pumps \hspace{1cm} 12
 1.6 Materials of construction \hspace{1cm} 12
 1.6.1 Nonmetallic pumps \hspace{1cm} 13

2 **Pump Hydraulics** \hspace{1cm} 15
 2.1 The pressure-head relationship \hspace{1cm} 15
 2.1.1 Pressure terminology \hspace{1cm} 16
 2.1.2 Pumping pressure \hspace{1cm} 17
 2.1.3 Total dynamic head \hspace{1cm} 18
 2.2 Performance curve \hspace{1cm} 18
 2.2.1 Efficiency \hspace{1cm} 19
 2.2.2 Net positive suction head \hspace{1cm} 20
 2.2.3 The composite pump performance curve \hspace{1cm} 21
 2.2.3.1 The best efficiency point (BEP) \hspace{1cm} 22
2.2.3.2 Pump run-out 22
2.2.3.3 Minimum flow point 22
2.3 Affinity laws 23
 2.3.1 Change of electric motor for performance change 25
 2.3.2 Other changes 25
2.4 Pump performance on special liquids 26
2.5 Impeller hydraulic loads 27
 2.5.1 Radial thrust 28
 2.5.2 Shaft deflection 29

3 System Hydraulics 31
3.1 Pump limitations 31
3.2 Liquid flow in pipes 31
 3.2.1 Specific gravity 31
 3.2.2 Pressure in a static system 32
 3.2.3 Pressure in a flowing system 32
 3.2.4 Changes in an existing system 33
 3.2.4.1 The effect of capacity change on friction 33
 3.2.4.2 The effect of head change on flow rate 34
 3.2.5 Pipe size changes in a system 34
3.3 Basic elements of pump system design 35
 3.3.1 Gravity and static head 35
 3.3.2 Friction losses and friction head 36
 3.3.3 Velocity head 37
 3.3.4 Total head 37
3.4 System curve 37
3.5 The effect of operating performance 38
 3.5.1 Static head changes 38
 3.5.1.1 Batch transfer system 38
 3.5.1.2 Pressurized system 39
 3.5.1.3 Closed loop system 40
 3.5.2 Friction head changes 40
 3.5.2.1 System controls 40
 3.5.2.2 Restrictions in piping 40
 3.5.3 Recirculation systems 40
 3.5.4 Pump speed changes 41
 3.5.5 Series and parallel operation 42
 3.5.5.1 Series operation 42
 3.5.5.2 Parallel operation 43
3.6 Pump system analysis
3.6.1 Example 1
3.6.2 Example 2
3.6.3 Example 3-A
3.6.4 Example 3-B
3.6.5 System curve revisited

4 Suction Conditions
4.1 General
4.2 Vapor pressure
4.3 Cavitation
4.4 Net positive suction head
 4.4.1 NPSH required by the pump
 4.4.1.1 Increase the eye area of the impeller
 4.4.1.2 Install a suction inducer
 4.4.1.3 Use a double suction impeller
 4.4.1.4 Use a slower speed pump
 4.4.1.5 Use lower capacity pumps
 4.4.1.6 Use a booster pump
 4.4.2 NPSH available from the system
 4.4.2.1 Static head (Hs)
 4.4.2.2 Surface pressure (Ha)
 4.4.2.3 Vapor pressure (Hvp)
 4.4.2.4 Friction losses (Hf)
 4.4.2.5 Sample NPSHA calculation
4.5 Suction specific speed
4.6 Confusing conditions
 4.6.1 Suction recirculation
 4.6.2 Discharge recirculation
 4.6.3 Air entrainment
4.7 Similarities and differences
4.8 Priming
 4.8.1 Self-priming pump layout
 4.8.2 Centrifugal pump with priming tank
 4.8.3 Air ejector system
4.9 Submergence

5 Pump selection and purchasing
5.1 Pump selection factors
 5.1.1 Operational experience
 5.1.2 End user data sheets
5.2 System operating considerations
Contents

5.2.1 Closed loop systems 73
5.2.2 Batch transfer system 76
5.2.3 Multiple destination systems 79

5.3 Price evaluation 80
5.3.1 Traditional pricing negotiation 81
5.3.2 Value based purchasing 82
5.3.3 Factors involved in mechanical suitability 83
5.3.3.1 Mechanical seals 83
5.3.3.2 Seal environment 83
5.3.3.3 Bearings 84
5.3.3.4 Lubricant protection 84
5.3.3.5 Rotational speed 84
5.3.3.6 Shaft slenderness ratio 84
5.3.3.7 Maintenance hours 85
5.3.3.8 Downtime and lost production 85
5.3.3.9 The results 85

6 Stufing Box Sealing 87
6.1 Shaft sealing 87
6.2 Packing 87
6.3 Mechanical Seals 89
6.3.1 Match the seal to the service 90
6.3.2 The seal faces 91
6.3.3 Seal flexibility options 92
6.3.4 Fretting seals 94
6.3.5 Balanced or unbalanced seals 94
6.3.6 Outside seals 96
6.3.7 Split seals 97
6.3.8 Cartridge seals 97
6.3.9 Double seals 99

6.4 Environmental controls 100
6.4.1 Seal flush 101
6.4.2 Reverse flush 102
6.4.3 Seal quench 102
6.4.4 Barrier fluid systems 103

6.5 The seal chamber 104

7 Pump Bearings 107
7.1 Pump bearings 107
7.2 Bearing loads 108
7.3 Ball bearings 111
7.4 Other types of bearing 114
7.4.1 Cylindrical roller bearings
7.4.2 Journal bearings
7.5 The total bearing arrangement
7.6 Oil lubrication
7.6.1 Static oil lubrication
7.6.2 Constant level oiler
7.6.3 Oil ring lubrication
7.6.4 Oil mist lubrication
7.7 Grease lubrication
7.7.1 Shielded bearings
7.8 Bearing life
7.9 Lubricant protection
7.9.1 Sealed bearings
7.9.2 The lip seal
7.9.3 The magnetic seals
7.9.4 Bearing isolator

8 Special Applications
8.1 Slurry pumping
8.1.1 Industrial slurries
8.1.2 Municipal waste
8.1.3 Pipelines and mines
8.1.4 Recessed impeller vortex pumps
8.1.5 Diaphragm pump
8.1.6 Progressive cavity pump
8.1.7 Solids and slurries – useful formulae
8.1.8 Abrasive wear
8.2 Paper stock
8.2.1 Air in stock
8.2.2 Excessive discharge throttling
8.2.3 Filters and additives
8.2.4 Paper stock pumps
8.2.4.1 Medium density stock pumps
8.2.4.2 High density pumps
8.2.4.3 The fan pump
8.2.5 Determination of pump performance
8.2.5.1 Example 1
8.2.5.2 Example 2

9 Special Pumps
9.1 Sump pumps
9.1.1 Vertical sump pump
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.1.2 Submersible pump</td>
<td>144</td>
</tr>
<tr>
<td>9.1.3 Priming the pump</td>
<td>145</td>
</tr>
<tr>
<td>9.1.4 Air operated double diaphragm pump</td>
<td>146</td>
</tr>
<tr>
<td>9.1.5 Horizontal centrifugal pump</td>
<td>147</td>
</tr>
<tr>
<td>9.1.6 Self-priming pump</td>
<td>148</td>
</tr>
<tr>
<td>9.2 Vertical turbine pumps</td>
<td>150</td>
</tr>
<tr>
<td>9.2.1 Vertical pump bowl assembly</td>
<td>152</td>
</tr>
<tr>
<td>9.2.2 Vertical pump column</td>
<td>153</td>
</tr>
<tr>
<td>9.2.3 Pump discharge head</td>
<td>154</td>
</tr>
<tr>
<td>9.2.4 Vertical pump performance</td>
<td>154</td>
</tr>
<tr>
<td>9.2.5 Vertical pump sump requirements</td>
<td>155</td>
</tr>
<tr>
<td>9.2.6 Vertical pump design considerations</td>
<td>156</td>
</tr>
<tr>
<td>9.3 Magnetic drive pumps</td>
<td>156</td>
</tr>
<tr>
<td>9.3.1 Pump bearings</td>
<td>157</td>
</tr>
<tr>
<td>9.3.2 Temperature considerations</td>
<td>158</td>
</tr>
<tr>
<td>9.3.3 Decoupling</td>
<td>158</td>
</tr>
<tr>
<td>9.3.4 Failure costs</td>
<td>159</td>
</tr>
<tr>
<td>9.4 Positive displacement pumps</td>
<td>159</td>
</tr>
<tr>
<td>9.4.1 The piston pump</td>
<td>159</td>
</tr>
<tr>
<td>9.4.2 The diaphragm pump</td>
<td>160</td>
</tr>
<tr>
<td>9.4.3 The gear and lobe pump</td>
<td>161</td>
</tr>
<tr>
<td>9.4.4 Screw pumps</td>
<td>162</td>
</tr>
<tr>
<td>9.4.5 Progressive cavity pump</td>
<td>163</td>
</tr>
<tr>
<td>10 Pump Installation and Piping</td>
<td>165</td>
</tr>
<tr>
<td>10.1 Installation</td>
<td>165</td>
</tr>
<tr>
<td>10.1.1 Location</td>
<td>165</td>
</tr>
<tr>
<td>10.1.2 Receiving</td>
<td>165</td>
</tr>
<tr>
<td>10.1.3 Handling</td>
<td>166</td>
</tr>
<tr>
<td>10.1.4 Foundation leveling</td>
<td>166</td>
</tr>
<tr>
<td>10.1.5 Mounting the baseplate</td>
<td>167</td>
</tr>
<tr>
<td>10.1.6 Cement based grouting</td>
<td>167</td>
</tr>
<tr>
<td>10.1.7 Epoxy based grouting</td>
<td>168</td>
</tr>
<tr>
<td>10.1.8 Pregrouted baseplates</td>
<td>168</td>
</tr>
<tr>
<td>10.2 Piping considerations</td>
<td>168</td>
</tr>
<tr>
<td>10.2.1 Location</td>
<td>169</td>
</tr>
<tr>
<td>10.2.1.1 Pipe size</td>
<td>169</td>
</tr>
<tr>
<td>10.2.1.2 Suction elbows</td>
<td>170</td>
</tr>
<tr>
<td>10.2.1.3 Straight pipe</td>
<td>171</td>
</tr>
<tr>
<td>10.2.1.4 Air pockets</td>
<td>171</td>
</tr>
<tr>
<td>10.2.1.5 Suction source design</td>
<td>172</td>
</tr>
<tr>
<td>10.2.1.6 Pipe strain</td>
<td>172</td>
</tr>
</tbody>
</table>
10.2.1.7 Pipe fittings

10.3 Alignment
10.3.1 Shaft couplings
10.3.2 Shaft offset and angularity
10.3.3 High temperature corrections
10.3.4 Typical acceptance values
10.3.5 Run out
10.3.6 Soft foot
10.3.7 Alignment methodology
10.3.8 C-flange adapter

11 Troubleshooting
11.1 Skill and experience
11.2 Operational problems
11.2.1 Cavitation problem solving
11.2.2 Uncurable conditions
11.3 Reliability problems
11.4 Failure analysis
11.4.1 Speed of problem occurrence
11.4.1.1 Excessive power consumption
11.4.2 Frequency of problem occurrence
11.4.2.1 Hydraulic imbalance in a double suction pump
11.4.2.2 Undersized shaft in an end suction pump
11.5 Failure modes
11.5.1 Impeller
11.5.2 Wear rings
11.5.3 Shaft
11.5.4 Sleeve
11.5.5 Bearings
11.5.6 Packing
11.5.7 Mechanical seal – general
11.5.7.1 Mechanical seal – seal faces

12 Pump Maintenance
12.1 The strategy
12.1.2 Economic considerations
12.2 Preparation for pump dismantling
12.3 Removing the back pull-out assembly
12.4 Inspection checks on cast parts
12.5 Casing and wear rings
12.6 Dismantling the back pull-out assembly
12.6.1 When packing is fitted
12.6.2 When a mechanical seal is fitted
12.6.3 Dismantling the bearing housing
12.7 Inspection checks
12.7.1 The back cover
12.7.2 The frame adapter
12.7.3 The bearing housing
12.7.4 Lip seals
12.7.5 The shaft
12.8 Mounting bearings on the shaft
12.8.1 Check shaft condition
12.9 Assembling the back pull-out assembly
12.9.1 A packed stuffing box
12.9.1.1 Installing the impeller with a packed stuffing box
12.9.1.2 Packing procedures
12.9.2 Installing with a mechanical seal
12.9.2.1 Installing the impeller with a mechanical seal
12.10 Installing the back pull-out assembly

13 Fluid Properties
13.1 Properties of water at various temperatures
13.2 Effect of altitude on pressures and the boiling point of water
13.3 Viscous liquids
13.3.1 Viscous performance correction for small pumps
13.3.2 Viscous performance correction for larger pumps

14 Friction Loss Tables
14.1 Friction loss for water in pipe
14.2 Typical resistance coefficients for valves and fittings

15 Materials of Construction
15.1 Materials of construction for pumping various liquids
15.2 Material selection
15.3 Material classes for centrifugal pumps in general refinery services