Vladimir Kanovei • Michael Reeken

Nonstandard Analysis, Axiomatically

Springer
Table of Contents

Introduction ... 1
Basic notation .. 10

1 **Getting started** .. 11
 1.1 The axiomatical system of Hrbacek set theory 12
 1.1a The universe of HST ... 12
 1.1b Axioms for the external universe 14
 1.1c Axioms for standard and internal sets 14
 1.1d Well-founded sets ... 16
 1.1e The ϵ-structure of internal and well-founded sets 17
 1.1f Axioms for sets of standard size 19
 1.1g Putting it all together ... 20
 1.1h Zermelo–Fraenkel theory ZFC 20
 1.2 Basic elements of the nonstandard universe 22
 1.2a How to define fundamental set theoretic notions in HST 22
 1.2b Closure properties and absoluteness 22
 1.2c Ordinals and cardinals ... 24
 1.2d Natural numbers, finite and *-finite sets 25
 1.2e Hereditarily finite sets 28
 1.3 Sets of standard size ... 29
 1.3a Cardinalities of sets of standard size 29
 1.3b Saturation and the Hrbacek paradox 30
 1.3c The principle of Extension 32
 1.4 The class Δ_2^* ... 34
 1.4a Basic properties of Δ_2^* 34
 1.4b Cuts (initial segments) of *-ordinals 35
 1.4c Monads and transversals 37
 1.4d On non-well-founded cardinalities 38
 1.4e Small and large sets .. 40
 1.5 Some finer points ... 42
 1.5a Von Neumann hierarchy and Reflection in ZFC 42
 1.5b Von Neumann hierarchy over internal sets in HST 44
 1.5c Classes and structures 45
 1.5d Interpretations .. 47
 1.5e Models .. 48
 1.5f Simulation of models of ZFC 49
 1.5g Asterisk is an elementary embedding 50

Historical and other notes to Chapter 1 52
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Elementary real analysis in the nonstandard universe</td>
<td>53</td>
</tr>
<tr>
<td>2.1</td>
<td>Hyperreal line</td>
<td>54</td>
</tr>
<tr>
<td>2.1a</td>
<td>Hyperreals</td>
<td>54</td>
</tr>
<tr>
<td>2.1b</td>
<td>Fundamentals of nonstandard real analysis</td>
<td>56</td>
</tr>
<tr>
<td>2.1c</td>
<td>Directed Saturation</td>
<td>57</td>
</tr>
<tr>
<td>2.1d</td>
<td>Nonstandard characterization of closed and compact sets</td>
<td>58</td>
</tr>
<tr>
<td>2.2</td>
<td>Sequences and functions</td>
<td>59</td>
</tr>
<tr>
<td>2.2a</td>
<td>Limits</td>
<td>60</td>
</tr>
<tr>
<td>2.2b</td>
<td>Continuous functions</td>
<td>61</td>
</tr>
<tr>
<td>2.2c</td>
<td>Intermediate value theorem</td>
<td>62</td>
</tr>
<tr>
<td>2.2d</td>
<td>Robinson's lemma and uniform limits</td>
<td>62</td>
</tr>
<tr>
<td>2.3</td>
<td>Topics in nonstandard real analysis</td>
<td>64</td>
</tr>
<tr>
<td>2.3a</td>
<td>Shadows and equivalences</td>
<td>64</td>
</tr>
<tr>
<td>2.3b</td>
<td>Near-standard elements</td>
<td>66</td>
</tr>
<tr>
<td>2.3c</td>
<td>Topology</td>
<td>69</td>
</tr>
<tr>
<td>2.4</td>
<td>Two special applications</td>
<td>73</td>
</tr>
<tr>
<td>2.4a</td>
<td>Euler factorization of the sine function</td>
<td>73</td>
</tr>
<tr>
<td>2.4b</td>
<td>Jordan curve theorem</td>
<td>76</td>
</tr>
<tr>
<td>3</td>
<td>Theories of internal sets</td>
<td>83</td>
</tr>
<tr>
<td>3.1</td>
<td>Introduction to internal set theories</td>
<td>84</td>
</tr>
<tr>
<td>3.1a</td>
<td>Internal set theory</td>
<td>84</td>
</tr>
<tr>
<td>3.1b</td>
<td>Bounded set theory</td>
<td>86</td>
</tr>
<tr>
<td>3.1c</td>
<td>Internal sets interpret BST in the external universe</td>
<td>87</td>
</tr>
<tr>
<td>3.1d</td>
<td>Basic internal set theory</td>
<td>88</td>
</tr>
<tr>
<td>3.1e</td>
<td>Standard natural numbers and standard finite sets</td>
<td>90</td>
</tr>
<tr>
<td>3.1f</td>
<td>Remarks on Basic Idealization and Saturation</td>
<td>92</td>
</tr>
<tr>
<td>3.2</td>
<td>Development of bounded set theory</td>
<td>93</td>
</tr>
<tr>
<td>3.2a</td>
<td>Half-bounded forms of Idealization</td>
<td>93</td>
</tr>
<tr>
<td>3.2b</td>
<td>Reduction to two “external” quantifiers</td>
<td>94</td>
</tr>
<tr>
<td>3.2c</td>
<td>Finite axiomatizability of BST and other corollaries</td>
<td>95</td>
</tr>
<tr>
<td>3.2d</td>
<td>Collection in BST</td>
<td>97</td>
</tr>
<tr>
<td>3.2e</td>
<td>Other basic theorems of BST</td>
<td>99</td>
</tr>
<tr>
<td>3.2f</td>
<td>Introduction to the problem of external sets</td>
<td>101</td>
</tr>
<tr>
<td>3.2g</td>
<td>More on “external sets” in BST</td>
<td>104</td>
</tr>
<tr>
<td>3.3</td>
<td>Internal theories with partial Saturation</td>
<td>105</td>
</tr>
<tr>
<td>3.3a</td>
<td>Two schemes of partially saturated internal theories</td>
<td>105</td>
</tr>
<tr>
<td>3.3b</td>
<td>κ-deep Basic Idealization scheme</td>
<td>106</td>
</tr>
<tr>
<td>3.3c</td>
<td>κ-size Basic Idealization scheme</td>
<td>109</td>
</tr>
<tr>
<td>3.4</td>
<td>Development of Nelson’s internal set theory</td>
<td>111</td>
</tr>
<tr>
<td>3.4a</td>
<td>Bounded sets in IST</td>
<td>111</td>
</tr>
<tr>
<td>3.4b</td>
<td>Bounded formulas: reduction to two “external” quantifiers</td>
<td>113</td>
</tr>
<tr>
<td>3.4c</td>
<td>Collection in IST</td>
<td>114</td>
</tr>
<tr>
<td>3.4d</td>
<td>Uniqueness in IST</td>
<td>117</td>
</tr>
<tr>
<td>3.5</td>
<td>Truth definition in internal set theory</td>
<td>118</td>
</tr>
<tr>
<td>3.5a</td>
<td>Truth definition for the standard universe</td>
<td>118</td>
</tr>
<tr>
<td>3.5b</td>
<td>Connection with the ordinary truth</td>
<td>120</td>
</tr>
<tr>
<td>3.5c</td>
<td>Extension of the definition of formal truth</td>
<td>122</td>
</tr>
</tbody>
</table>
3.6 Second edition of IST .. 124
 3.6a Standard and nonstandard theories of Nelson’s system 124
 3.6b The background nonstandard universe 125
 3.6c Three “myths” of IST 127

Historical and other notes to Chapter 3 129

4 Metamathematics of internal theories 131
 4.1 Outline of metamathematical properties 132
 4.1a Nonstandard extensions of structures 132
 4.1b Nonstandard extensions of theories 133
 4.1c Comments ... 134
 4.1d Metamathematics of internal theories: the main results 136
 4.2 Ultrapowers and saturated extensions 138
 4.2a Saturated structures and nonstandard set theories 138
 4.2b Quotient power extensions 140
 4.2c Adequate and good ultrafilters and ultrapowers 142
 4.2d Elementary chains of structures 144
 4.3 Metamathematics of BST 146
 4.3a Warmup: several examples 146
 4.3b Infinite Fubini products of adequate ultrafilters 148
 4.3c Standard core interpretation of BST in ZFC 150
 4.3d Saturated standard core interpretation 152
 4.4 The conservativity and equiconsistency of IST 154
 4.4a Good extensions of von Neumann sets in ZFC universe .. 154
 4.4b Iterated adequate extensions of von Neumann sets 155
 4.4c Iterated adequate extensions in the \mathcal{V}-version of ZFC 156
 4.4d Long iterated quotient power chains 156
 4.4e Conservativity of IST by inner models 157
 4.5 Non-reducibility of IST 159
 4.5a The minimality axiom 159
 4.5b The source of counterexamples 160
 4.5c The ultrafilter 161
 4.5d “Definable” adequate quotient power 163
 4.5e Corollaries and remarks 164
 4.6 Interpretability of IST in a standard theory 166
 4.6a Standard theory with a global choice and a truth predicate 166
 4.6b Formally definable classes 168
 4.6c A nonstandard theory extending IST 169
 4.6d The ultrafilter 170
 4.6e The interpretation 173
 4.6f Extendibility of standard models 175

Historical and other notes to Chapter 4 176

5 Definable external sets and metamathematics of HST 179
 5.1 Introduction to metamathematics of HST 180
 5.1a Internal core embeddings and interpretability 180
 5.1b Metamathematics of HST: an overview 181
 5.2 From internal to elementary external sets 184
 5.2a Interpretation of EEST in BST 184
XIV Table of Contents

5.2b Elementary external sets in external theories 186
5.2c Some basic theorems of EEST 188
5.2d Standard size, natural numbers, finiteness in EEST 189
5.3 Assembling of external sets in HST 191
5.3a Well-founded trees .. 191
5.3b Coding of the assembling construction 192
5.3c Examples of codes 193
5.3d Regular codes ... 195
5.4 From elementary external to all external sets 196
5.4a The domain of the interpretation 196
5.4b Basic relations between codes 198
5.4c The structure of basic relations 200
5.4d The interpretation and the embedding 202
5.4e Verification of the HST axioms 204
5.4f Superposition of interpretations 207
5.4g The problem of external sets revisited 209
5.5 The class L[B] : sets constructible from internal sets 211
5.5a Sets constructible from internal sets 211
5.5b Proof of the theorem on I-constructible sets 212
5.5c The axiom of I-constructibility 214
5.5d Transfinite constructions in L[B] 215

Historical and other notes to Chapter 5 217

6 Partially saturated universes and the Power Set problem 219
6.1 Internal subuniverses 220
6.1a Some basic definitions and results 220
6.1b Relative standardness 221
6.1c Simple relative standardness 222
6.1d Gordon classes .. 224
6.1e Associated structures 225
6.1f More on internal subuniverses 228
6.1g Appendix: Kunen's theorem 229
6.2 Partially saturated internal universes 230
6.2a Partially saturated classes \mathcal{I}_α 230
6.2b Good internal subuniverses 232
6.2c Internal universes over complete sets 233
6.3 External universes ... 237
6.3a External universes and internal core extensions 237
6.3b Von Neumann construction over non-transitive classes 239
6.3c Absoluteness for external subuniverses 240
6.4 Partially saturated external universes 241
6.4a Partially saturated external theories 241
6.4b Extensions of thin classes 243
6.4c Constructible extensions 244
6.4d Constructible extensions of self-definable classes 246
6.4e The classes $\mathcal{L}[\mathcal{I}_\alpha]$ 248
6.4f External universes over complete sets 249
6.4g Collapse onto a transitive class 251
6.4h Outline of applications: subuniverses satisfying Power Set ... 252
7 Forcing extensions of the nonstandard universe

7.1 Generic extensions of models of HST

- 7.1a Ground model
- 7.1b Regular extensions
- 7.1c Forcing notions and names
- 7.1d Adding a set
- 7.1e Forcing relation
- 7.1f Generic extensions and the truth lemma
- 7.1g The extension models HST

7.2 Applications: collapse maps and isomorphisms

- 7.2a Making two internal sets equinumerous
- 7.2b Internal preserving bijections
- 7.2c Making elementarily equivalent structures isomorphic
- 7.2d The forcing notion
- 7.2e Key lemma
- 7.2f Generic isomorphisms

7.3 Consistency of the isomorphism property

- 7.3a The product forcing notion
- 7.3b Externalization
- 7.3c Restricted forcing relations
- 7.3d Automorphisms and the restriction property
- 7.3e The product generic extension

8 Other nonstandard theories

8.1 Nonstandard set theory of Kawai

- 8.1a The axioms of Kawai's theory
- 8.1b Metamathematical properties
- 8.1c Special model axiom

8.2 "Nonstandard set theory" of Hrbáček

- 8.2a Axioms
- 8.2b Additional axioms of Collection
- 8.2c Conservativity and consistency
- 8.2d Remarks and exercises

8.3 Non-well-founded set theories

- 8.3a Boffa's non-well-founded set theory
- 8.3b Extensions of proper classes
- 8.3c Applications to nonstandard analysis
- 8.3d Alpha theory
- 8.3e Interpretation of Alpha theory in ZFBC

8.4 Miscellanea: some other theories

- 8.4a A theory with "definable" Saturation
- 8.4b Stratified nonstandard set theories
- 8.4c Nonstandard class theories

Historical and other notes to Chapter 6 254
Historical and other notes to Chapter 7 279
Historical and other notes to Chapter 8 315