Contents

Preface

- Acknowledgements

Abbreviations

1 Introduction

Harri Holma, Antti Toskala and Ukko Lappalainen

1.1 WCDMA in Third Generation Systems

1.2 Air Interfaces and Spectrum Allocations for Third Generation Systems

1.3 Schedule for Third Generation Systems

1.4 Differences between WCDMA and Second Generation Air Interfaces

1.5 Core Networks and Services

References

2 UMTS Services and Applications

Harri Holma, Martin Kristensson, Jouni Salonen and Antti Toskala

2.1 Introduction

2.2 Person-to-Person Circuit Switched Services

2.2.1 AMR Speech Service

2.2.2 Video Telephony

2.3 Person-to-Person Packet Switched Services

2.3.1 Images and Multimedia

2.3.2 Push-to-Talk over Cellular (PoC)

2.3.3 Voice over IP (VoIP)

2.3.4 Multiplayer Games

2.4 Content-to-person Services

2.4.1 Browsing

2.4.2 Audio and Video Streaming

2.4.3 Content Download

2.4.4 Multimedia Broadcast Multicast Service, MBMS

2.5 Business Connectivity

2.6 IP Multimedia Sub-system, IMS
WCDMA for UMTS

2 Quality of Service Differentiation

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.7 Quality of Service Differentiation</td>
<td>31</td>
</tr>
<tr>
<td>2.8 Capacity and Cost of Service Delivery</td>
<td>37</td>
</tr>
<tr>
<td>2.8.1 Capacity per Subscriber</td>
<td>37</td>
</tr>
<tr>
<td>2.8.2 Cost of Capacity Delivery</td>
<td>38</td>
</tr>
</tbody>
</table>

2.9 Service Capabilities with Different Terminal Classes

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.9 Service Capabilities with Different Terminal Classes</td>
<td>40</td>
</tr>
</tbody>
</table>

2.10 Location Services in WCDMA

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.10 Location Services</td>
<td>40</td>
</tr>
<tr>
<td>2.10.1 Location Services</td>
<td>40</td>
</tr>
<tr>
<td>2.10.2 Cell Coverage Based Location Calculation</td>
<td>41</td>
</tr>
<tr>
<td>2.10.3 Observed Time Difference Of Arrival, OTDOA</td>
<td>42</td>
</tr>
<tr>
<td>2.10.4 Assisted GPS</td>
<td>44</td>
</tr>
</tbody>
</table>

References

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>45</td>
</tr>
</tbody>
</table>

3 Introduction to WCDMA

Peter Muszynski and Harri Holma

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1 Introduction</td>
<td>47</td>
</tr>
<tr>
<td>3.2 Summary of the Main Parameters in WCDMA</td>
<td>47</td>
</tr>
<tr>
<td>3.3 Spreading and Despreading</td>
<td>49</td>
</tr>
<tr>
<td>3.4 Multipath Radio Channels and Rake Reception</td>
<td>52</td>
</tr>
<tr>
<td>3.5 Power Control</td>
<td>55</td>
</tr>
<tr>
<td>3.6 Softer and Soft Handovers</td>
<td>58</td>
</tr>
</tbody>
</table>

References

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
</tr>
</tbody>
</table>

4 Background and Standardisation of WCDMA

Antti Toskala

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1 Introduction</td>
<td>61</td>
</tr>
<tr>
<td>4.2 Background in Europe</td>
<td>61</td>
</tr>
<tr>
<td>4.2.1 Wideband CDMA</td>
<td>62</td>
</tr>
<tr>
<td>4.2.2 Wideband TDMA</td>
<td>63</td>
</tr>
<tr>
<td>4.2.3 Wideband TDMA/CDMA</td>
<td>63</td>
</tr>
<tr>
<td>4.2.4 OFDMA</td>
<td>64</td>
</tr>
<tr>
<td>4.2.5 ODMA</td>
<td>64</td>
</tr>
<tr>
<td>4.2.6 ETSI Selection</td>
<td>64</td>
</tr>
<tr>
<td>4.3 Background in Japan</td>
<td>65</td>
</tr>
<tr>
<td>4.4 Background in Korea</td>
<td>65</td>
</tr>
<tr>
<td>4.5 Background in the United States</td>
<td>66</td>
</tr>
<tr>
<td>4.5.1 W-CDMA N/A</td>
<td>66</td>
</tr>
<tr>
<td>4.5.2 UWC-136</td>
<td>66</td>
</tr>
<tr>
<td>4.5.3 cdma2000</td>
<td>66</td>
</tr>
<tr>
<td>4.5.4 TR46.1</td>
<td>67</td>
</tr>
<tr>
<td>4.5.5 WP-CDMA</td>
<td>67</td>
</tr>
<tr>
<td>4.6 Creation of 3GPP</td>
<td>67</td>
</tr>
<tr>
<td>4.7 How does 3GPP Operate?</td>
<td>69</td>
</tr>
<tr>
<td>4.8 Creation of 3GPP2</td>
<td>70</td>
</tr>
<tr>
<td>4.9 Harmonisation Phase</td>
<td>70</td>
</tr>
</tbody>
</table>
5 Radio Access Network Architecture

Fabio Longoni, Atte Länxisalmi and Antti Toskala

5.1 System Architecture 75
5.2 UTRAN Architecture 78
 5.2.1 The Radio Network Controller 79
 5.2.2 The Node B (Base Station) 80
5.3 General Protocol Model for UTRAN Terrestrial Interfaces 80
 5.3.1 General 80
 5.3.2 Horizontal Layers 80
 5.3.3 Vertical Planes 81
5.4 Iu, the UTRAN-CN Interface 82
 5.4.1 Protocol Structure for Iu CS 82
 5.4.2 Protocol Structure for Iu PS 84
 5.4.3 RANAP Protocol 85
 5.4.4 Iu User Plane Protocol 86
 5.4.5 Protocol Structure of Iu BC, and the SABP Protocol 87
5.5 UTRAN Internal Interfaces 88
 5.5.1 RNC—RNC Interface (Iur Interface) and the RNSAP Signalling 88
 5.5.2 RNC—Node B Interface and the NBAP Signalling 91
5.6 UTRAN Enhancements and Evolution 93
 5.6.1 IP Transport in UTRAN 93
 5.6.2 Iu Flex 93
 5.6.3 Stand Alone SMLC and lupc Interface 94
 5.6.4 Interworking between GERAN and UTRAN, and the Iur-g Interface 94
 5.6.5 All IP RAN Concept 94
5.7 UMTS Core Network Architecture and Evolution 95
 5.7.1 Release '99 Core Network Elements 95
 5.7.2 Release 5 Core Network and IP Multimedia Sub-system 96
References 98

6 Physical Layer

Antti Toskala

6.1 Introduction 99
6.2 Transport Channels and their Mapping to the Physical Channels 100
 6.2.1 Dedicated Transport Channel 101
 6.2.2 Common Transport Channels 101
 6.2.3 Mapping of Transport Channels onto the Physical Channels 103
 6.2.4 Frame Structure of Transport Channels 104
6.3 Spreading and Modulation 104
 6.3.1 Scrambling 104

References 98
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.3.2</td>
<td>Channelisation Codes</td>
<td>105</td>
</tr>
<tr>
<td>6.3.3</td>
<td>Uplink Spreading and Modulation</td>
<td>105</td>
</tr>
<tr>
<td>6.3.4</td>
<td>Downlink Spreading and Modulation</td>
<td>110</td>
</tr>
<tr>
<td>6.3.5</td>
<td>Transmitter Characteristics</td>
<td>113</td>
</tr>
<tr>
<td>6.4</td>
<td>User Data Transmission</td>
<td>114</td>
</tr>
<tr>
<td>6.4.1</td>
<td>Uplink Dedicated Channel</td>
<td>114</td>
</tr>
<tr>
<td>6.4.2</td>
<td>Uplink Multiplexing</td>
<td>117</td>
</tr>
<tr>
<td>6.4.3</td>
<td>User Data Transmission with the Random Access Channel</td>
<td>119</td>
</tr>
<tr>
<td>6.4.4</td>
<td>Uplink Common Packet Channel</td>
<td>120</td>
</tr>
<tr>
<td>6.4.5</td>
<td>Downlink Dedicated Channel</td>
<td>120</td>
</tr>
<tr>
<td>6.4.6</td>
<td>Downlink Multiplexing</td>
<td>122</td>
</tr>
<tr>
<td>6.4.7</td>
<td>Downlink Shared Channel</td>
<td>124</td>
</tr>
<tr>
<td>6.4.8</td>
<td>Forward Access Channel for User Data Transmission</td>
<td>125</td>
</tr>
<tr>
<td>6.4.9</td>
<td>Channel Coding for User Data</td>
<td>126</td>
</tr>
<tr>
<td>6.4.10</td>
<td>Coding for TFCI Information</td>
<td>127</td>
</tr>
<tr>
<td>6.5</td>
<td>Signalling</td>
<td>127</td>
</tr>
<tr>
<td>6.5.1</td>
<td>Common Pilot Channel (CPICH)</td>
<td>127</td>
</tr>
<tr>
<td>6.5.2</td>
<td>Synchronisation Channel (SCH)</td>
<td>128</td>
</tr>
<tr>
<td>6.5.3</td>
<td>Primary Common Control Physical Channel (Primary CCPCH)</td>
<td>128</td>
</tr>
<tr>
<td>6.5.4</td>
<td>Secondary Common Control Physical Channel (Secondary CCPCH)</td>
<td>130</td>
</tr>
<tr>
<td>6.5.5</td>
<td>Random Access Channel (RACH) for Signalling Transmission</td>
<td>131</td>
</tr>
<tr>
<td>6.5.6</td>
<td>Acquisition Indicator Channel (AICH)</td>
<td>131</td>
</tr>
<tr>
<td>6.5.7</td>
<td>Paging Indicator Channel (PICH)</td>
<td>131</td>
</tr>
<tr>
<td>6.5.8</td>
<td>Physical Channels for the CPCH Access Procedure</td>
<td>132</td>
</tr>
<tr>
<td>6.6</td>
<td>Physical Layer Procedures</td>
<td>133</td>
</tr>
<tr>
<td>6.6.1</td>
<td>Fast Closed Loop Power Control Procedure</td>
<td>133</td>
</tr>
<tr>
<td>6.6.2</td>
<td>Open Loop Power Control</td>
<td>134</td>
</tr>
<tr>
<td>6.6.3</td>
<td>Paging Procedure</td>
<td>134</td>
</tr>
<tr>
<td>6.6.4</td>
<td>RACH Procedure</td>
<td>135</td>
</tr>
<tr>
<td>6.6.5</td>
<td>CPCH Operation</td>
<td>136</td>
</tr>
<tr>
<td>6.6.6</td>
<td>Cell Search Procedure</td>
<td>137</td>
</tr>
<tr>
<td>6.6.7</td>
<td>Transmit Diversity Procedure</td>
<td>138</td>
</tr>
<tr>
<td>6.6.8</td>
<td>Handover Measurements Procedure</td>
<td>139</td>
</tr>
<tr>
<td>6.6.9</td>
<td>Compressed Mode Measurement Procedure</td>
<td>140</td>
</tr>
<tr>
<td>6.6.10</td>
<td>Other Measurements</td>
<td>142</td>
</tr>
<tr>
<td>6.6.11</td>
<td>Operation with Adaptive Antennas</td>
<td>143</td>
</tr>
<tr>
<td>6.6.12</td>
<td>Site Selection Diversity Transmission</td>
<td>144</td>
</tr>
<tr>
<td>6.7</td>
<td>Terminal Radio Access Capabilities</td>
<td>145</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>148</td>
</tr>
</tbody>
</table>

7 Radio Interface Protocols

Jukka Vialén and Antti Toskala

7.1 Introduction | 149
7.2 Protocol Architecture | 149
7.3 The Medium Access Control Protocol | 151

References | 148
7.3.1 MAC Layer Architecture
7.3.2 MAC Functions
7.3.3 Logical Channels
7.3.4 Mapping Between Logical Channels and Transport Channels
7.3.5 Example Data Flow Through the MAC Layer
7.4 The Radio Link Control Protocol
7.4.1 RLC Layer Architecture
7.4.2 RLC Functions
7.4.3 Example Data Flow Through the RLC Layer
7.5 The Packet Data Convergence Protocol
7.5.1 PDCP Layer Architecture
7.5.2 PDCP Functions
7.6 The Broadcast/Multicast Control Protocol
7.6.1 BMC Layer Architecture
7.6.2 BMC Functions
7.7 Multimedia Broadcast Multicast Service
7.8 The Radio Resource Control Protocol
7.8.1 RRC Layer Logical Architecture
7.8.2 RRC Service States
7.8.3 RRC Functions and Signalling Procedures
7.9 Early UE Handling Principles
References

8 Radio Network Planning
Harri Holma, Zhi-Chun Honkasalo, Seppo Hämäläinen, Jaana Laiho,
Kari Sipilä and Achim Wacker
8.1 Introduction
8.2 Dimensioning
8.2.1 Radio Link Budgets
8.2.2 Load Factors
8.2.3 Capacity Upgrade Paths
8.2.4 Capacity per km²
8.2.5 Soft Capacity
8.2.6 Network Sharing
8.3 Capacity and Coverage Planning and Optimisation
8.3.1 Iterative Capacity and Coverage Prediction
8.3.2 Planning Tool
8.3.3 Case Study
8.3.4 Network Optimisation
8.4 GSM Co-planning
8.5 Inter-operator Interference
8.5.1 Introduction
8.5.2 Uplink vs. Downlink Effects
8.5.3 Local Downlink Interference
8.5.4 Average Downlink Interference
WCDMA for UMTS

8.5.5 Path Loss Measurements 223
8.5.6 Solutions to Avoid Adjacent Channel Interference 225

8.6 WCDMA Frequency Variants 226
8.6.1 Introduction 226
8.6.2 Differences Between Frequency Variants 226
8.6.3 WCDMA1900 in an Isolated 5 MHz Block 228

References 229

9 Radio Resource Management 231
Harri Holma, Klaus Pedersen, Jussi Reunanen, Janne Laakso and Oscar Salonaho

9.1 Interference-Based Radio Resource Management 231
9.2 Power Control 232
9.2.1 Fast Power Control 232
9.2.2 Outer Loop Power Control 239
9.3 Handovers 245
9.3.1 Intra-frequency Handovers 245
9.3.2 Inter-system Handovers Between WCDMA and GSM 254
9.3.3 Inter-frequency Handovers within WCDMA 258
9.3.4 Summary of Handovers 259

9.4 Measurement of Air Interface Load 261
9.4.1 Uplink Load 261
9.4.2 Downlink Load 263
9.5 Admission Control 264
9.5.1 Admission Control Principle 264
9.5.2 Wideband Power-Based Admission Control Strategy 265
9.5.3 Throughput-Based Admission Control Strategy 267

9.6 Load Control (Congestion Control) 267

References 268

10 Packet Scheduling 269
Jeroen Wigard, Harri Holma, Renaud Cuny, Nina Madsen, Frank Frederiksen and Martin Kristensson

10.1 Transmission Control Protocol (TCP) 269
10.2 Round Trip Time 276
10.3 User-specific Packet Scheduling 278
10.3.1 Common Channels (RACH/FACH) 279
10.3.2 Dedicated Channel (DCH) 280
10.3.3 Downlink Shared Channel (DSCH) 282
10.3.4 Uplink Common Packet Channel (CPCH) 282
10.3.5 Selection of Transport Channel 282
10.3.6 Paging Channel States 286

10.4 Cell-specific Packet Scheduling 286
10.4.1 Priorities 288
10.4.2 Scheduling Algorithms 289
10.4.3 Packet Scheduler in Soft Handover 289
10.5 Packet Data System Performance 291
 10.5.1 Link Level Performance 291
 10.5.2 System Level Performance 292
10.6 Packet Data Application Performance 294
 10.6.1 Introduction to Application Performance 295
 10.6.2 Person-to-person Applications 296
 10.6.3 Content-to-person Applications 300
 10.6.4 Business Connectivity 302
 10.6.5 Conclusions on Application Performance 305

References 306

11 High-speed Downlink Packet Access 307
Antti Toskala, Harri Holma, Troels Kolding, Preben Mogensen,
Klaus Pedersen and Karri Ranta-aho

11.1 Release '99 WCDMA Downlink Packet Data Capabilities 307
11.2 HSDPA Concept 308
11.3 HSDPA Impact on Radio Access Network Architecture 310
11.4 Release 4 HSDPA Feasibility Study Phase 311
11.5 HSDPA Physical Layer Structure 311
 11.5.1 High-speed Downlink Shared Channel (HS-DSCH) 312
 11.5.2 High-speed Shared Control Channel (HS-SCCH) 315
 11.5.3 Uplink High-speed Dedicated Physical Control Channel
 (HS-DPCCH) 317
 11.5.4 HSDPA Physical Layer Operation Procedure 318
11.6 HSDPA Terminal Capability and Achievable Data Rates 320
11.7 Mobility with HSDPA 321
 11.7.1 Measurement Event for Best Serving HS-DSCH Cell 322
 11.7.2 Intra-Node B HS-DSCH to HS-DSCH Handover 322
 11.7.3 Inter-Node B HS-DSCH to HS-DSCH Handover 323
 11.7.4 HS-DSCH to DCH Handover 324
11.8 HSDPA Performance 326
 11.8.1 Factors Governing Performance 326
 11.8.2 Spectral Efficiency, Code Efficiency and Dynamic Range 326
 11.8.3 User Scheduling, Cell Throughput and Coverage 330
 11.8.4 HSDPA Network Performance with Mixed Non-HSDPA
 and HSDPA Terminals 334
11.9 Terminal Receiver Aspects 337
11.10 Evolution Beyond Release 5 338
 11.10.1 Multiple Receiver and Transmit Antenna Techniques 338
 11.10.2 High Speed Uplink Packet Access (HSUPA) 339
11.11 Conclusion 344
References 345
12 Physical Layer Performance

Harri Holma, Jussi Reunanen, Leo Chan, Preben Mogensen, Klaus Pedersen, Kari Horneman, Jaakko Vihriälä and Markku Juntti

12.1 Introduction

12.2 Cell Coverage
 12.2.1 Uplink Coverage
 12.2.2 Downlink Coverage

12.3 Downlink Cell Capacity
 12.3.1 Downlink orthogonal Codes
 12.3.2 Downlink Transmit Diversity
 12.3.3 Downlink Voice Capacity

12.4 Capacity Trials
 12.4.1 Single Cell Capacity Trials
 12.4.2 Multicell Capacity Trials
 12.4.3 Summary

12.5 3GPP Performance Requirements
 12.5.1 Eb/N0 Performance
 12.5.2 RF Noise Figure

12.6 Performance Enhancements
 12.6.1 Smart Antenna Solutions
 12.6.2 Multiuser Detection

References

13 UTRA TDD Modes

Antti Toskala, Harri Holma, Otto Lehtinen and Heli Väätäjä

13.1 Introduction
 13.1.1 Time Division Duplex (TDD)
 13.1.2 Differences in the Network Level Architecture

13.2 UTRA TDD Physical Layer
 13.2.1 Transport and Physical Channels
 13.2.2 Modulation and Spreading
 13.2.3 Physical Channel Structures, Slot and Frame Format
 13.2.4 UTRA TDD Physical Layer Procedures

13.3 UTRA TDD Interference Evaluation
 13.3.1 TDD–TDD Interference
 13.3.2 TDD and FDD Co-existence
 13.3.3 Unlicensed TDD Operation
 13.3.4 Conclusions on UTRA TDD Interference

13.4 HSDPA Operation with TDD

13.5 Concluding Remarks and Future Outlook on UTRA TDD

References
14 cdma2000

Antti Toskala

14.1 Introduction

14.2 Logical Channels
 14.2.1 Physical Channels

14.3 Multicarrier Mode Spreading and Modulation
 14.3.1 Uplink Spreading and Modulation
 14.3.2 Downlink Spreading and Modulation

14.4 User Data Transmission
 14.4.1 Uplink Data Transmission
 14.4.2 Downlink Data Transmission
 14.4.3 Channel Coding for User Data

14.5 Signalling
 14.5.1 Pilot Channel
 14.5.2 Synch Channel
 14.5.3 Broadcast Channel
 14.5.4 Quick Paging Channel
 14.5.5 Common Power Control Channel
 14.5.6 Common and Dedicated Control Channels
 14.5.7 Random Access Channel (RACH) for Signalling Transmission

14.6 Physical Layer Procedures
 14.6.1 Power Control Procedure
 14.6.2 Cell Search Procedure
 14.6.3 Random Access Procedure
 14.6.4 Handover Measurements Procedure

References

Index