Prestressed concrete bridges: design and construction

Nigel R. Hewson
Contents

Preface xiv
Disclaimer xvi
Acknowledgements xvii
List of figures xix
List of tables xxviii

1. Prestressed concrete in bridgeworks 1
 Introduction 1
 Principles of prestressing 4
 Pre-tensioning 6
 Post-tensioning 7
 Brief history of prestressed concrete bridges 9
 References 19

2. Prestressing components and equipment 20
 Introduction 20
 Proprietary systems 20
 Wires 21
 Strands and tendons 23
 Bars 24
 Anchorages 25
 Tendon couplers 26
 Ducting 28
 Equipment for placing tendons 30
 Stressing jacks 31
 References 33

3. Durability and detailing 34
 Introduction 34
 Recent history of durability issues in the UK 34
 Corrosion protection and ducting 36
 Concrete 37
Contents

<table>
<thead>
<tr>
<th>Contents</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Detailing</td>
<td>38</td>
</tr>
<tr>
<td>Access</td>
<td>40</td>
</tr>
<tr>
<td>Stray current protection</td>
<td>43</td>
</tr>
<tr>
<td>External tendon replacement</td>
<td>44</td>
</tr>
<tr>
<td>References</td>
<td>44</td>
</tr>
<tr>
<td>4. Grouting post-tensioned tendons</td>
<td>46</td>
</tr>
<tr>
<td>Introduction</td>
<td>46</td>
</tr>
<tr>
<td>Recent history of grouting</td>
<td>46</td>
</tr>
<tr>
<td>Grout material</td>
<td>47</td>
</tr>
<tr>
<td>Grout material tests</td>
<td>48</td>
</tr>
<tr>
<td>Grouting equipment</td>
<td>50</td>
</tr>
<tr>
<td>Vents and other details</td>
<td>51</td>
</tr>
<tr>
<td>Grouting trials</td>
<td>53</td>
</tr>
<tr>
<td>Pre-grouting test (pressure testing) of the ducting system</td>
<td>54</td>
</tr>
<tr>
<td>Air pressure testing</td>
<td>54</td>
</tr>
<tr>
<td>Water pressure testing</td>
<td>55</td>
</tr>
<tr>
<td>Leakages</td>
<td>56</td>
</tr>
<tr>
<td>Grouting procedure</td>
<td>57</td>
</tr>
<tr>
<td>Grease and wax grout</td>
<td>58</td>
</tr>
<tr>
<td>References</td>
<td>58</td>
</tr>
<tr>
<td>5. Prestress design</td>
<td>60</td>
</tr>
<tr>
<td>Introduction</td>
<td>60</td>
</tr>
<tr>
<td>General approach</td>
<td>60</td>
</tr>
<tr>
<td>Primary and secondary prestress effects</td>
<td>64</td>
</tr>
<tr>
<td>Prestress force and losses</td>
<td>67</td>
</tr>
<tr>
<td>Friction losses and tendon extension</td>
<td>67</td>
</tr>
<tr>
<td>Elastic shortening and strains</td>
<td>69</td>
</tr>
<tr>
<td>Relaxation of tendon steel</td>
<td>70</td>
</tr>
<tr>
<td>Creep losses</td>
<td>71</td>
</tr>
<tr>
<td>Shrinkage losses</td>
<td>72</td>
</tr>
<tr>
<td>Tendon eccentricity in ducts</td>
<td>73</td>
</tr>
<tr>
<td>Serviceability limit state stress check</td>
<td>73</td>
</tr>
<tr>
<td>Deflections and pre-camber</td>
<td>76</td>
</tr>
<tr>
<td>Vibrations and fatigue in tendons</td>
<td>76</td>
</tr>
<tr>
<td>Ultimate moment design</td>
<td>77</td>
</tr>
<tr>
<td>Shear design</td>
<td>79</td>
</tr>
<tr>
<td>Torsion design</td>
<td>81</td>
</tr>
<tr>
<td>Longitudinal shear</td>
<td>81</td>
</tr>
<tr>
<td>Partial prestressing</td>
<td>82</td>
</tr>
<tr>
<td>Construction sequence and creep analysis</td>
<td>83</td>
</tr>
<tr>
<td>Temperature effects</td>
<td>84</td>
</tr>
<tr>
<td>Concrete properties</td>
<td>87</td>
</tr>
<tr>
<td>Application of the prestress</td>
<td>88</td>
</tr>
<tr>
<td>Design procedures to BS 5400</td>
<td>88</td>
</tr>
<tr>
<td>Serviceability limit state stress check</td>
<td>89</td>
</tr>
</tbody>
</table>
Contents

Input data 143
Analysis of the structure 146
Output 150
Summary 150
References 150

9. Slab bridges 151
 Introduction 151
 Solid-slab bridges 152
 Voided-slab bridges 152
 Design of slab bridges 154
 Reference 155

10. Beam-and-slab bridges 156
 Introduction 156
 General arrangement 160
 Construction of in situ beam-and-slab decks 163
 Casting and transportation of precast beams 165
 Erection of precast beams 169
 Casting of deck slab 171
 Design of beam-and-slab decks 173
 General design 173
 Stress distribution through section 173
 Precast beams in continuous and integral decks 176
 Prestress and reinforcement 176
 References 178

11. In situ multi-cell box girder decks 179
 Introduction 179
 General arrangement 180
 Construction of in situ multi-cell box girders 181
 Design of in situ multi-cell box girders 186
 References 189

12. In situ single-cell box girder bridges 190
 Introduction 190
 General arrangement 191
 Construction, span-by-span 194
 Construction by balanced cantilever 197
 Design of in situ single-cell box girders 201
 Box behaviour 202
 Prestress layout 202
 Transverse prestressing of top slab 202
 Deck articulation 204
 Deck construction 205
 References 205
13. Precast segmental box girders

Introduction 206
General arrangement 208
Casting of segments 210
Storage and transportation of segments 218
Segment erection, general 222
Segment erection by the balanced cantilever method 229
Segment erection by the span-by-span method 236
Segment erection by the progressive placement method 239
Design aspects associated with precast segmental decks 240
Prestress tendon layout 240
Shear keys at joint 240
Design with epoxy or concrete joints 243
Design with dry joints 244
Typical segment details 247
Deck erection 247
References 248

14. Precast full-length box girders 250

Introduction 250
General arrangement 253
Casting and storage of the units 253
Transportation of the units 256
Erection of the units 258
Design of full-length precast box girder decks 261

15. Incrementally launched box girder bridges 262

Introduction 262
General arrangement 264
Casting the deck 267
Launching the deck 271
Design aspects associated with launched box girder decks 276
Longitudinal design during launch 276
Transverse and local design during launch 278
Construction tolerances 279
Construction loading 279
Loads on supports during launching 279
References 281

16. Cable-stayed bridges 282

Introduction 282
Cable-stayed bridge arrangements 284
Construction of concrete cable-stayed bridges 287
Box girder decks 289
Beam-and-slab decks 290
Design aspects associated with concrete cable-stayed bridges 295
Contents

- Analysis of cable-stayed bridges 296
- Deck design and behaviour 298
- Deck dynamic behaviour 302
- Stays 303
- Temporary loading 303
- References 305

17. Other prestressed concrete bridge types 306

- Introduction 306
- Extra-dosed bridges 306
- Fin-back bridges 308
- Truss bridges 309
- Arch bridges 310
- Footbridges 312
- References 313

18. Problems and failures 314

- Introduction 314
- Prestressing components 314
 - Wire, strand and tendon failures 314
 - Tendon extensions 315
 - Grouting and ducts 316
 - Corrosion 316
- Concrete and reinforcement 317
 - Concrete cracks 317
 - Honeycombing 318
 - Concrete cover 320
- Problems during construction 321
 - Failures due to design 321
 - Construction procedures 322
 - Structural behaviour problems 323
- Problems after opening 324
 - Durability 324
 - Rehabilitation and modifications 324
- References 324

Appendix A: Definitions 326

Appendix B: Symbols and notations used 328

Appendix C: Further reading and useful references 332

- Introduction 332
- Books 332
- Design guides and technical reports 333
- Articles 334
- Standards, codes of practice and specifications 335
- Websites 337